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•  Big Data Integration 

•  Statistical Challenges in Image Data 
 
•  Image-on-Scalar Models 
 
•  Image-on-Genetic Association Models  
 
•  Predictive Models 
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Big Data 
What?   Wikipedia for Big data 
 
Big data refers data sets with sizes beyond the ability of commonly used  
software tools to capture, curate, manage, and process data within a tolerable 
elapsed time.  
 
Big data is a set of techniques and techologies that require new forms of 
integration to uncover large hidden values from large daatsets that are diverse, 
complex, and of a massive scale 
 
Size? 
 
A few dozen terabytes to many petabytes of data.  
 
Characteristics?  
 
Volume, Variety, Velocity, Variability, Veracity, Complexity, …. 
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Big Data or Pig Data  
Why?    
 
    Answer questions of personal or scientific interest.  
 
What matters?  
 
   Ensuring accurate and appropriate data collection. 
   Correct variables, Collection methods (techniques and sampling),    
 

   Quality assurance and Quality control   
 
 Does it work?  
 
    Big data does not work in most cases, since we do not know  
           (i) which variables (information at which scale) are critical; 
           (ii) whether we have capability to collect such information.   
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Big Data Integration 

Big data integration is to integrate multiple sources of data to 
improve knowledge discovery.  
 
Data Sources Discovery: 
 
 
Data Exploration (e.g., meta analysis): 
 (i) the use of prior knowledge,- and its efficient storage; 
(ii) the development of statistical methods to analyze 
heterogeneous data sets;  
(iii) the creation of data explorative tools that incorporate both 
useful summary statistics and new visualization tools.  
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Human Genome Project 
The HGP aims to determine the sequence of chemical base pairs which  
make up human DNA and identify and map all of the genes of the human 
 genome. 
 
1000 Genomes Project 
 
Encyclopedia of DNA Elements Project (ENCODE) 
 
The Cancer Genome Atlas Project (TGCA) is to generate  
insights into the heterogeneity of different cancer subtypes 
by creating a map of molecular alternations for every type of cancer at 
multiple levels.  
 
Immunological Genome Project (ImmGen)  
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The Brain Research through  
            Advancing Innovative Neurotechnologies or BRAIN,  
aims to reconstruct the activity of every single neuron as they fire  
simultaneously in different brain circuits, or perhaps even whole brains.  
 

aims to simulate the complete human brain on  
Supercomputers to better understand how it functions. 

HBP and BRAIN 
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Big Neuroimaging Data 

www.guysandstthomas.nhs.uk/.../T/Twins400.jpg  

NIH normal brain development 
   1000 Functional Connectome Project 
      Alzheimer’s Disease Neuroimaging Initiative 
          National Database for Autism Research (NDAR) 
              Human Connectome Project 
                 Philadelphia Neurodevelopmental Cohort  
                    Genome superstruct Project   
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Big Data to Knowledge (BD2K) 

The four aims of BD2K are  
 
To facilitate broad use of biomedical digital assets by making them discoverable,  
accessible, and citable 
 
To conduct research and develop the methods, software, and tools needed to  
analyze biomedical data.  
 
To enhance training in the development and use of methods and tools necessary  
for biomedical Big Data science 
 
To support a data ecosystem that accelerates discovery as part of a digital  
enterprise.  
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Precision Medicine 
Precision medicine (PM) is a medical model that proposes the customization  
of healthcare—with medical decisions, practices, and/or products being tailored  
to the individual patient. 
 
Precision Medicine refers to the tailoring of medical treatment to the individual  
characteristics of each patient. It does not literally mean the creation of drugs  
or medical devices that are unique to a patient, but rather the ability to classify  
individuals into subpopulations that differ in their susceptibility to a particular  
disease, in the biology and/or prognosis of those diseases they may develop,  
or in their response to a specific treatment. 
 
PM (wiki)  
 

TOWARD PRECISION MEDICINE
Building a Knowledge Network for 

Biomedical Research and a New Taxonomy of Disease

Committee on A Framework for 
Developing a New Taxonomy of Disease

Division on Earth and Life Studies
Board of Life Studies

Cover Art: Nicolle Rager Fuller, Sayo-Art LLC  
Photo: © Graham Bell/Corbis

Patient (19yr) with High-risk Neuroblastoma 

•  19 yrs old 
•  Stage 4 

Bone Marrow 

Met1-BM:  
bone marrow 
biopsy at 
diagnosis.  
>80% tumor 

Diagnosis 

�  4 
cycles  
Inducti
on 
�A3973 

Primary: tumor 
removed by 
surgery 
viable margin 

Surgery  

~4 Months 

Met2-Liver: 
autopsy 
macro-dissected Death  

� 8 cycles of 
Salvage 
Therapy 
� 7 cycles of 

RA 
� Radiation 

multiple 
sites 
� Low dose 

MIBG 

3 years 

Whole genome seq of liver Met2 
& RNAseq of Met1, primary and 
Met2 
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Dream Challenges 
http://dreamchallenges.org 
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Study Design 

51⇔ρ

91⇔ρ

95⇔ρ

Design:  cross-sectional studies; 
        clustered studies including  
              longitudinal and twin/familial studies;  

Scientific Questions 
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Neuroimaging research examples:
neuroscience

Structural 
MRI

Diffusion 
MRI

Functional 
MRI 

(resting)

Functional 
MRI (task)

   Imaging Data 

Overview 

• Structural MRI

• Diffusion MRI

• Functional MRI

• Complementary techniques

- Variety of acquisitions
- Measurement basics
- Limitations & artefacts
- Analysis principles
- Acquisition tips

PET EEG/MEG Calcium  CT 
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   Multi-Omic Data 

Ritchie et al. (2015).  
Nature Review Genetics 

Meta-dimensional analysis
An approach whereby all 
scales of data are combined 
simultaneously to produce 
complex models defined  
as multiple variables from 
multiple scales of data.

Multi-staged analysis
A stepwise or hierarchical 
analysis method that reduces 
the search space through 
different stages of analysis.

Systems genomics
An analysis approach that 
models the complex inter- and 
intra-individual variations  
of traits and diseases using 
data from next-generation 
omic data.

Data integration
The incorporation of 
multi-omic information in  
a meaningful way to provide a 
more comprehensive analysis 
of a biological point of interest.

In this Review, we describe the principles of meta-
dimensional analysis and multi-staged analysis, and 
provide an overview of some of the approaches that 
are used to predict a given quantitative or categorical 
outcome, the tools available to implement these analy-
ses, and the various strengths and weaknesses of these 
strategies. In addition, we describe the analytical chal-
lenges that emerge with data sets of this magnitude, and 
provide our perspective on how such systems genomic 
analyses might develop in the future.

Why integrate data?
Data integration can have numerous meanings; however, 
in this Review, we use it to mean the process by which 
different types of omic data are combined as predictor 
variables to allow more thorough and comprehensive 
modelling of complex traits or phenotypes — which are 
likely to be the result of an elaborate interplay among 
biological variation at various levels of regulation — 
through the identification of more informative models. 
Data integration methods are now emerging that aim 
to bridge the gap between our ability to generate vast 
amounts of data and our understanding of biology, thus 

reflecting the complexity within biological systems. 
The primary motivation behind integrated data analy-
sis is to identify key genomic factors, and importantly 
their interactions, that explain or predict disease risk or 
other biological outcomes. The success in understand-
ing the genetic and genomic architecture of complex 
phenotypes has been modest, and this could be due to 
our limited exploration of the interactions among the 
genome, transcriptome, metabolome and so on. Data 
integration may provide improved power to identify 
the important genomic factors and their interactions 
(BOX 1). In addition, modelling the complexity of, and 
the interactions between, variation in DNA, gene 
expression, methylation, metabolites and proteins 
may improve our understanding of the mechanism 
or causal relationships of complex-trait architecture. 
There are two main approaches to data integration: 
multi-staged analysis, which involves integrating 
information using a stepwise or hierarchical analysis 
approach; and meta-dimensional analysis, which refers 
to the concept of integrating multiple different data 
types to build a multi variate model associated with a 
given outcome16–18.

Nature Reviews | Genetics

• SNP
• CNV
• LOH
• Genomic
    rearrangement
• Rare variant

• DNA methylation
• Histone modification
• Chromatin 
    accessibility
• TF binding
• miRNA

• Gene expression
• Alternative splicing
• Long non-coding
    RNA
• Small RNA

• Protein
    expresssion
• Post-translational
    modification
• Cytokine array

• Metabolite
    profiling in
    serum, plasma,
    urine, CSF, etc.

Genome ProteomeTranscriptomeEpigenome

DNA Gene mRNA
TF Metabolites

Protein

Transcription Expression Translation Function

Alternative
splicing

miRNA

TFbs

TFbs

TFbs

Me

Histone

Metabolome Phenome

• Cancer

• Metabolic
   syndrome

• Psychiatric
   disease

Figure 1 | Biological systems multi-omics from the genome, epigenome, 
transcriptome, proteome and metabolome to the phenome.  
Heterogeneous genomic data exist within and between levels, for example, 
single-nucleotide polymorphism (SNP), copy number variation (CNV), loss 
of heterozygosity (LOH) and genomic rearrangement, such as translocation, 
at the genome level; DNA methylation, histone modification, chromatin 
accessibility, transcription factor (TF) binding and micro RNA (miRNA) at the 

epigenome level; gene expression and alternative splicing at the 
transcriptome level; protein expression and post-translational modification 
at the proteome level; and metabolite profiling at the metabolome level. 
Arrows indicate the flow of genetic information from the genome level to 
the metabolome level and, ultimately, to the phenome level. The red crosses 
indicate inactivation of transcription or translation. CSF, cerebrospinal  
fluid; Me, methylation; TFBS, transcription factor-binding site.

REVIEWS

2 | ADVANCE ONLINE PUBLICATION  www.nature.com/reviews/genetics

© 2015 Macmillan Publishers Limited. All rights reserved



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

   Clinical Data and Acquisition 
Clinical Data: a variety of clinical sources to present a unified view  
of a single patient.  
 
clinical laboratory test results, patient demographics, pharmacy information,  
hospital admission, discharge and transfer date, progress report, etc.  

Clinical Acquisition:  
•  Paper or electronic medical records  
•  Paper forms completed at a site 
•  Interactive voice response systems  
•  Local electronic data capture systems 
•  Central web based systems 
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   Data Exploration  
Data Analysis  
 
•  Single Level Data Analysis for imaging or omics data, e.g., 

denoise, segmentation, cluster, network,   

•  Multi-level Data Analysis for across imaging or omics data  

•  Data Integration Analysis for imaging, clinical, and omics data. 

     Multi-staged  analysis 
     Meta-dimensional analysis 
     Mediation/moderation analysis  

Software/Computing Language/ 
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  Apache Spark 
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Cloud Computing 

Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim Grance 

 
•  Shared pool of configurable computing resources 
•  On-demand network access 
•  Provisioned by the Service Provider 
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http://en.wikipedia.org/wiki/DNA_sequence 

Big Data Integration 

  G 

   I   E 

  D  
Selection 

E: environmental factors 

G: genetic/genomics 
D: disease  

I: imaging/device 
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Big Data Integration 

Etiology 
Prevention  
Treatment 

Medical Informatics 
& Management 

Care 
Policy  
System 
Science 
Insurance 
Economics 
Pharmaceutical  

Disease Medical Industry 
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Big Data Integration 

  G 

  B   E 

  D  
Selection 

E: environmental factors 

G: genetic markers 
D: disease  
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Statistical Challenges in Imaging Data 
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Ra

w
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Image 
Reconstruction 

Image 
Registration 

Image 
Smoothing 

Statistical 
Analysis 

Statistical  
Modelling 

Multiple 
Comparisons 

Imaging and Statistical Analysis 
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Individual Imaging Analysis 
Imaging Construction Image Segmentation 

Multimodal Analysis 

DTI FLAIR 

Marc 
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Group Imaging Analysis 

Longitudinal/Family Brain Group Differences 

Prediction 

Imaging Genetics 

NC/Diseased 

Registration 

Hibar, Dinggang, Martin 
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Key Features 

•  Spatial Smoothness 

•  Spatial Correlation 

•  Spatial Heterogeneity 

Noisy Imaging Data 

•  Infinite Dimension 
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`Noisy’ Spatial Maps 
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Image Registration 
Image registration is the process of transforming 
different sets of data into one coordinate system. 
Given a reference image R and a template image T, 
find a reasonable transformation Y, such that the 
transformed image T[Y] is similar to R.    

Dinggang 
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Method LPBA40 IBSR18 CUMC12 MGH10 

FLIRT 59.29±11.94 39.71±13.00 39.63±11.51 46.24±14.03 

AIR 65.23±10.72 41.41±13.35 42.52±11.90 47.99±14.10 

ANIMAL 66.20±10.17 46.31±13.51 42.78±11.95 50.40±15.21 

ART 71.85±9.59 51.54±14.42 50.54±12.16 56.10±15.33 

D. Demons 68.93±9.23 46.83±13.37 46.45±11.46 52.28±14.94 

FNIRT 70.07±9.80 47.63±14.15 46.53±12.26 49.54±14.58 

IRTK 70.02±10.26 52.09±14.97 51.75±12.45 54.90±15.70 

JRD-fuild 70.02±9.83 48.95±13.87 46.37±12.06 52.33±14.81 

ROMEO 68.49±10.12 46.48±13.91 44.49±13.04 51.23±14.55 

SICLE 60.41±16.21 44.53±13.03 42.08±12.19 48.36±14.31 

SyN 71.46±10.86 52.81±14.85 51.63±12.60 56.83±15.81 

SPM_N1 66.97±10.14 42.10±13.25 36.70±12.43 49.77±14.54 

SPM_N2 57.13±14.95 37.18±14.11 42.93±11.75 43.16±15.88 

SPM_US3 68.62±9.00 45.29±12.60 44.81±11.35 49.61±14.08 

SPM_D4 67.15±18.34 54.02±14.70 51.98±13.91 54.31±16.05 

S-HAMMER 72.48±8.46 55.47±11.27 53.74±9.82 58.20±15.03 

 
 

[1] SPM 5 (“SPM2-type” Normalization) 
[2] SPM 5 (Normalization)   [3] SPM 5 (Unified Segmentation)  [4] SPM 5 (DARTEL Toolbox) 

[1] Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.-C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song, 
J.H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann, J.J., Parsey, R.V., 2009. Evaluation of 14 
nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage 46, 786-802. 
[2] Wu, G., Kim, M., Wang, Q., Shen, D.: Hierarchical Attribute-Guided Symmetric Diffeomorphic Registration for MR Brain Images. MICCAI 2012, 
Nice, France (2012) 

Brain image dataset with 
manually labeled ROIs 

Registration Errors 
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Noisy Spatial Correlation 

Long-range Correlation  Short-range Correlation  

“Unmodeled effects” “Signal Processing” 

Daniel 
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Noisy Spatial Heterogeneity 

Osteoarthritis (OA)  Cartilage Loss 

Marc 
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Complex Data Structure 

Multivariate Imaging Measures 
      Smooth Functional Imaging Measures 
           Whole-brain Imaging Measures 
                 4D-Time Series Imaging Measures  
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Image-on-Scalar Models 
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Big Data Integration 

  G 

  B   E 

  D  
Selection 

E: environmental factors 

G: genetic markers 
D: disease  
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Reading Materials 
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UNC Early Brain Development Studies 

•  Singletons, twins, high risk 
•  A longitudinal prospective study  
•  900 young children aged 0 to 6 years  
•  Recruited prenatally 

– Exclusion: ultrasound abnormality, significant fetal/  
       maternal medical problem, substance abuse  
•  3TMRI (Seimens Allegra)  
    – T1, T2, DTI, resting state fMRI  
•  Scanned during normal sleep(no meds)  
•  Ear protection, head in vac-fix device  
•  Success rate: 87% @ 2 weeks, 71% @ 1 year, 62% at 2 years  
 

PIs: Drs. John H. Gilmore and Weili Lin 
To track changes in behavior with brain structure, connectivity, and function,  
in order to characterize the progression from primary changes to  
subsequent clinical presentation, and to identify predictors of divergence 
 from the typical trajectory. 
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Representative T2-weighted images (upper row) from a subject imaged over the course of the first 
two years of life along with the segmented left and right ventricles (lower row) are shown. 

Bompard L, Xu S, Styner M, Paniagua B, et al. (2014) Multivariate Longitudinal Shape Analysis of Human Lateral Ventricles 
during the First Twenty-Four Months of Life. PLoS ONE 9(9):  

CS1: Longitudinal Analysis of Lateral Ventricles 

Objectives:   Chart changes in brain structure 
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CS1: Longitudinal Analysis of Lateral Ventricles 

The number of subjects imaged and  
the number of right and left ventricles  
available for analysis at each age point 

The total intracranial volume (ICV) and  
the left and right ventricular volumes with age  
are shown in A and B, respectively. 
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Qualitative comparisons of the shape changes of the right and left lateral ventricles between two 
contiguous imaging time points are shown. 

CS1: Longitudinal Analysis of Lateral Ventricles 
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CS2: White Matter Tract Development 
2 week 

s

Objectives: Dynamic functional effects of covariates of interest on white 
matter tracts. 

67 

Fiber tracts in Atlas Space 

67 

fornix and uncinate 

uncinate 

genu, splenium, motor 

Neonate (n=270) 

Macaque (n=52) 

1 year 2 year 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

CS2: White Matter Tract Development 
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CS2: White Matter Tract Development 

Predictive power of principal components 
for single-index model and sufficient 
dimension reduction 
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ANDI 

(A) Left Cingulum 

(B) Right Cingulum 

(C) Fornix 

NC vs. MCI MCI vs. AD NC vs. AD 

Yan, Chuang, Thompson, Zhu 
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 CS3: Development of Brain’s Default Network 
•  Purposes   
♦  To delineate the emergence and development of one of the 

most salient functional networks-the default network during 
the first two years of life.  

•  Subjects and imaging parameters 
♦  71 normal subjects including 20 neonates (9M, 2412days (SD)); 

24 1-year-olds (16M, 131mon) and 27 2-year-olds (17M, 
251mon); 15 adut subjects (11M, 25~35 years) were also 
included for comparison.  

♦  For the rfcMRI studies, a T2*-weighted EPI sequence was used 
to acquire images.  The imaging parameters were: TR=2sec, 
TE=32 ms; 33 slices; and voxel size =4x4x4 mm3. This 
sequence was repeated 150 times so as to provide time series 
images.  



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

fcMRI 

 CS3: Development of Brain’s Default Network 

Buckner et al.  (2008) 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Results-the Emerging Default Network 

A primitive and incomplete default network is observed in 2wk olds, followed by  
a marked increase in the number of brain regions exhibiting functional connectivity  
and the percent of functional connection at 1yr olds, and finally becoming a similar  
network as that reported in adults at 2yr olds.  
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 CS4: Detection of Traumatic Brain Injury 
•  Purposes   
     Use DTI to detect traumatic axonal injury.   
•  Subjects 
♦  235 normal subjects were also included for comparison.  
♦  Global measures (mean, median) and ROI measures  

�	� ��	�

�	� ��	�

���� �����
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 CS4: Detection of Traumatic Brain Injury 
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Smoothed Functional Data 

Covariates (e.g., age, gender, diagnostic) 

Data Structure 
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Noisy Piecewise Smooth Function with  Unknown Jumps and Edges 

Neuroimaging Data with Discontinuity 

Subject1 Subject2 

Covariates (e.g., age, gender, diagnostic, stimulus) 
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Challenging Issues   

•  Complicated domains (e.g., surface mesh) 
•  Complicated objects (e.g., matrix response)    
•  Longitudinal and familial studies (e.g., heritability) 
•  Short-range to medium-to-long-range spatial correlations 
•  Asymptotic theory (e.g., simultaneous confidence bound, 

minimax theory) 

yi (s) = f (xi ,B (s))⊕ε i (xi , s) s∈S
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Longitudinal Fiber Tracts 

yi (s, t) = xi (t)
T B (s)+ zi (t)

Tξi (s)+ηi (s, t)+εi (s, t)

Functional Mixed Effect Models 

Spatial-temporal Process Longitudinal Data 

yi (s, t1)
yi (s, t2 )
yi (s, t3)t

s

Objectives: 
Dynamic functional effects of covariates of interest on functional response. 
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Functional Mixed Process Models 

ηi (•,•) ~ SP(0,Ση ),   ξi (•) ~ SP(0,Σξ ) εi (•) ~ SP(0,Σε ),
Global Noise Components Local Correlated Noise 

Decomposition: 

yi (s,t) = xi (t)
T B (s)+ zi (t)

T ξi (s)+ηi (s,t)+ ε i (s,t)

n{vec(B̂(s)− B(s)− 0.5O(H 2 )) : s∈D} L⎯ →⎯ G(0,ΣB(s, s '))

Ying et al. (2014). NeuroImage. 
Zhu, Chen, Yuan, and Wang (2014). Arxiv.  
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Functional Nonlinear Mixed Effects Model 

yi, j (s) = f (φi (s), xi, j )+εi, j (s),

Mixed Effect Fixed Effect Nonlinear Function 

Decomposition: 

Asymptotic Normality: 

Luo,  Zhu, Kong, and Zhu (2015). IPMI 

n{vec( !β(s)−β(s)−O(h2 )) : d ∈ D} L! →! G(0,Σβ (s, s '))

φi (s) = β(s)+ bi (s)

Random Effect 
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Simulations 

Plots of power curves. Rejection rates based on score bootstrap method are calculated 
using FNMEM and NMEM, with sample size 50 and 100 at significant levels 5% and 1% . 
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SVCM 

  yi(d) = xi
T B(d)+ηi(d)+ ε i(d),d ∈D

( ) ~ (0, )ij SP ηη • Σ
εij (•) ~ SP(0,Σε ),

Σy (d ,d ') = Ση (d ,d ')+Σε (d ,d )

Long-range Correlation 
Short-range Correlation Piecewise Smooth 

Varying Coefficients 

Decomposition: 

Covariance operator: 

3D volume/ 
2D surface 

B(d )∈ LK
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SVCM 

  

Cartoon Model 
 B(d) = (β1(d),!,βK (d))

T

•  Disjoint Partition 

•  Piecewise Smoothness: Lipschitz condition 

•  Smoothed Boundary 

•  Local Patch  

•  Degree of Jumps 

φ=∩∪= = '1  and  lll
L
l DDDD
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   Adaptively Smoothing LSEs 

Σ̂η (d ,d ') = η̂i (d )η̂i (d ')
T

i=1

n

∑ / n

ˆ ˆ{( , ( )) : 1, , }kl kl d lλ ψ = ∞L

 Estimate covariance operator  

 Least Squares Estimates 

SVCM 
B̂(d;h0 ) = ( xixi

T

i=1

n

∑ )−1 xi yi (d )
i=1

n

∑

Smoothing residual images 

  Calculate standard deviation 

η̂i (d ) = S(yi (d )− xi
T B̂(d;h0 ))

β̂ j (d;hs ) = wj (d ,d ';hs )d '∈B(d ,hs )
∑ β̂ j (d;h0 ) wj (d ,d ';hs )d '∈B(d ,hs )

∑
Propogation-Seperation Method  
J. Polzehl and V. Spokoiny,  (2000,2005) 
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•  Increasing Bandwidth 

Adaptive Smoothing Methods 

•  Adaptive Weights 

•  Adaptive Estimates 

0100 rhhh S =<<<< !

d

ω(d,d ';h1)

 
⌢
β j (d;h1)

ω(d,d ';h2 )

 
⌢
β j (d;hS )

ω(d,d ';h2 )

 

ω (d,d ';hs ) = Kloc(|| d − d ' || /hs )Kst (Dβ j
(d,d ';hs−1) /Cn )

Dβ j
(d,d ';hs−1) = ρ(

⌢
β j (d;hs−1),

⌢
β j (d ';hs−1))

Stopping Rule 

At each voxel 

 
⌢
β j (d;h0 )

  
β̂ j (d;hs ) =

wj (d ,d ';hs )d '∈B(d ,hs )∑ β̂ j (d;h0 )

wj (d ,d ';hs )d '∈B(d ,hs )∑
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Simulation 
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Simulation 
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Age  Diagnotic Status×

Gender  Diagnostic status×

0h

0h

10h

10h

Interaction effect estimates

0.4 

0.4 

0.5 

0.5 

3 

3 

2 

2 
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 Longitudinal Neuroimaging Data 
Models for longitudinal neuroimaging data

yi (d , t) = µ(d , xi (t)) + ⌘i (d , t) + ✏i (d , t) for i = 1, . . . , n, (2)

where

µ(d , xi (t)) is the fixed main e↵ect, which depends semi-parametrically

on the covariates xi (t) = (xi,1(t), . . . , xi,p(t))
T ,

⌘i (d , t) characterizes both individual image variations from µ(d , xi (t))

and the medium-to-long-range dependence of imaging data

between yi (d , t) and yi (d
0, t 0) for any (d , t) 6= (d 0, t 0),

✏i (d , t) are spatially and temporally correlated errors that capture

the local (or short-range) dependence of imaging data,

⌘i (d , t) and ✏i (d , t) are, respectively, independent and identical copies

of GP(0,⌃⌘) and GP(0,⌃✏) and mutually independent.

Across  
subjects & time 

Across  
Modality & time 

Local   
spatial-temporal 
smoothness 

Hyun,J.W., Li, Y. M.,  Wang, Y.P., H. Zhu (2014) LSGPP. In Submission.  
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ADNI PET Data 
Prediction results-Cont’d

(a) (b) (c) 

Figure : rtMSPE maps for prediction of ADNI PET images at month 12
for 79 test subjects. Selected slices are shown for (a) Semi-parametric
model; (b) Semi-parametric model+FPCA; (c) Semi-parametric
model+FPCA+Spatial-temporal model.
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  Image-on-Genetic Association Models  
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http://en.wikipedia.org/wiki/DNA_sequence 

Big Data Integration 

  G 

  B   E 

  D  
Selection 

E: environmental factors 

G: genetic markers 
D: disease  
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Genome-wide Identification of Variants 
Affecting Early Human Brain Development  

•  Singletons, twins, high risk 
•  A longitudinal prospective study  
•  900 young children aged 0 to 6 years  
•  3TMRI (Seimens Allegra)  
    – T1, T2, DTI, resting state fMRI 
•  Genotyping: the Illumina OMNI quad beadchip with 1,140,419 

single nucleotide polymorphisms (SNPs) and more than 6,000 
common and 5,000 rare CNV regions with 10-15 markers per 
region    

 

PI: Dr. Knickmeyer  
 The central objective of this project is to identify genetic factors which explain  

variation in neonatal brain structure, as assessed by magnetic resonance 
 imaging (MRI) and diffusion tensor imaging (DTI).  
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CS5: Candidate Genes and Neonatal Gray Metter 
•  272 neonates 
    - 152 Male and 120 Female, 144 singletons, 128 twins 
•  Tensor based morphometry  
•  Candidate Genes 

    – apolipoproteinE (APOE;ε3ε4 vs.ε3ε3) 
    – catechol-O-methyltransferase (COMT, rs4680) 
    – disrupted-in-schizophrenia-1(DISC1,rs821616andrs6675281)  
    – neuregulin1 (NRG1,rs35753505andrs6994992) 
    – estrogenreceptoralpha (ESR1,rs9340799andrs2234693) 
    – brain-derivedneurotrophicfactor(BDNF,rs6265) 
    – glutamatedecarboxylase1(GAD1akaGAD67,rs2270335)  
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The effect of COMT (rs4680) genotype on 
neonatal brain structure

. Upper images show the locations of gray matter increases (red) and decreases (blue) in Val/Val homozygotes as compared to Met carriers projected onto surface-rendered views 

of the left and right hemispheres; lateral view (top), medial view (middle). Bottom images are selected 2D slices with significant clusters displayed on the atlas of the neonate 

brain. The color bar gives the p value at each voxel. Red/yellow indicates Val/Val > other. Blue/green indicates Val/Val < other.cc

The effect of APOE genotype on neonatal brain 
structure 

Upper images show the locations of gray matter increases (red) and decreases (blue) in ε3ε3 homozygotes as compared to ε3ε4 
heterozygotes projected onto surface-rendered views of the left and right hemispheres; lateral view (top), medial view (middle). Bottom 
images are selected 2D slices with significant clusters displayed on the atlas of the neonate brain. The color bar gives the p value at each 
voxel. Red/yellow indicates ε3ε3 > ε3ε4. Blue/green indicates ε3ε3 < ε3ε4.

CS5: Candidate Genes and Neonatal Gray Metter 

COMT (rs4680) APOE 
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1.4 Results of SNP associations in autosomes

Figure 1: QQ-plot of association test using genotyped SNPs

3

CS6: GWAS Neonatal ROIs 

562 subjects (296 singletons and 246 twins) 
Buccal cells were genotyped with Affymetrix  
Axiom Genome-Wide LAT and Exome arrays.  
SNP imputation was performed using data from  
the 1000 Genomes project. An intergenic hotspot  
in 15q13.3 fell just short of genome-wide  
significance in relation to ICV itself (rs8030297;  
p=5.17 x 10-8, nearest gene KLF13).  
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Table. Loci exceeding conventional GWAS threshold for ICV-adjusted brain volumes  

CS6: GWAS Neonatal ROIs 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

 CS6: Imaging Genetics for ADNI 

•  A longitudinal prospective study with 1700 aged between 55 to 90 years  
•  Clinical Data including Clinical and Cognitive Assessments 
•  Genetic Data including Ilumina SNP genotyping and WGS 
•  MRI (fMRI, DTI, T1, T2) 
•  PET (PIB, Florbetapir PET and FDG-PET)  
•  Chemical Biomarker 

 

PI: Dr. Michael W. Weiner  
 •  detecting AD at the earliest stage and marking its progress through biomarkers;  

•  developing new diagnostic methods for AD intervention, prevention, and treatment. 
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CS6: Fast Voxelwise Genome Wide Association analysiS  

Fig. 8: Map of �log10(p�value) for determining significant clusters of a SNP on the template.

42

•  708 subjects (186 AD, 388 MCI, and 224 HC) 
 
•  501,584 SNPs 

•  RAVEN Maps with 501,584 voxels 

Figure 6: Two-dimensional representation for Simulation I. The first two PCs for PCA, SPCA-400
(SPCA based on top 400 voxels), WPCA-1, WPCA-2, SWPCA and PSWPCA are plotted. The
training set (top panels) and test set (bottom panels) are used to extract the PCs. Points with
blue, red, and green colors represent Class 0, Class 1, and Class 2, respectively.

Figure 7: Data and weight illustration for ADNI study. The left panel is a three-view slice illus-
tration at coordinate (49, 57, 32) of a sample RAVENS-map; the middle panel shows the important
scores of SPCA; the right panel illustrates the FDR-corrected � log 10 p-value map used as WG for
WPCA-2, SWPCA and PSWPCA.

31

APOE 
computational time 

1 CPU 2 days 
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Connectome-Wide Genome-Wide Screen  
Alzheimer risk gene 

Jahanshad	  et	  al.,	  PNAS	  2013	  

Discovery	  sample	  –	  Young	  Adults	  
Effect	  in	  ADNI	  
Within	  2	  weeks	  Sherva	  et	  al.	  published	  SPON1	  	  
Found	  in	  a	  cogniDve	  GWAS	  in	  AD	  
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Statistical Methods 

Hibar, et al. HBM 2012 



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Data Structure 

Imaging:     3D 
Matrix 

  3D 
Matrix 

……. 

Person No.1 ……. Person No.1000 

 
Genetic     : 

1 2  0
0  1
  
1 0  2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

Person No. 1 

Person No. 100 

. 

. 

. 

SNP1 SNP2 ……. SNP 
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Challenging Issues   

•  Complicated domains (e.g., surface mesh, loci) 
•  Complicated objects (e.g., matrix response)    
•  Longitudinal and familial studies (e.g., heritability) 
•  Short-range to medium-to-long-range spatial/genetic 

correlations 
•  High-dimensional response and covariate  
•  Asymptotic theory (e.g., simultaneous confidence bound, 

minimax theory) 

yi (•) = f (xi (!),B (•,!))⊕ ε i (•)
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Big-Data Challenges 
106

107
B : px × py

Y :n × py
104

107

X : px × n

106

104

Memory:  
 
 
 
 
Computational time:  

O((px + py )n + px py )

O(px pyn) =O(10
17 )
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A Heteroscedastic Linear Model 

   
yi v( ) = xi

Tβ v( ) + zi c( )T
γ c,v( ) + ei v( ) for i = 1,...,n

where                                        is a         vector associated with 

non-genetic predictors, and                                                is an                

vector of  genetic fixed effects (e.g., additive or dominant). 

Moreover,          are measurement errors with zero mean and                                   

   are independent across i. 
 

   β v( ) = β1 v( ),…,βK v( )( )T
1K ×

   γ c,v( ) = γ 1 c,v( ),…,γ L c,v( )( )T

1L×

( )ie v

( ){ }:i ie v v V= ∈e
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A Heteroscedastic Linear Model 

( ) ( ) ( ) ( ) ( )0 1, : , 0 versus , : , 0 for each ,H c v c v H c v c v c v= ≠γ γ
We need to test: 

We calculate a Wald-type statistic as: 

    

W c,v( ) = !γ c,v( )T
Cov !γ c,v( )( ){ }−1

!γ c,v( )
= tr Zc

T In − PX( )Zc{ }−1
Zc

T In − PX( )σ e
−2 c,v( )Y v( )Y v( )T

In − PX( )Zc{ }
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(I) Spatially 
Heteroscedastic 

Linear Model 

(II) Global Sure 
Independence 

Screening  
Procedure 

(III) Detection 
 Procedure 

Fast Voxelwise Genome Wide Association analysiS  
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(a) 

(b) 

X : px ×1

YBT : py × px

X: Sparsity;    Y|X: Clustered ROIs  

Key Features 

 
!BT : py × px

 
!X : px ×1⇒ !XR : px

R ×1
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Simulation Studies 

Fig. Simulation results for comparisons between FVGWAS and the Matrix eQTL in 
identifying significant voxel-SNP pairs. 

Simulation settings: the dark, gray, and white regions 
in the figure, respectively, represent background,  
brain region, and the effected ROI associated with the 
causal SNPs. 
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Results 
Our computational time 

About 33,800 s 
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      High Dimensional Regression Model 

Xi = {Xi (g) :g∈G0}
Data  {(Yi ,Xi ) : i = 1,,n}

Yi = {yi (v) :v∈V0}

Y

n × py

X

n × px

B

px × py

E

n × py

Key Conditions: 
•  Sparsity of B 
•  Restricted null-space property for design matrix X   

Phenotype Genotype Error 

max(px , py ) ~ n
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•  Lasso 1, 2, 3, …. 
•  SCAD, MCP, ….. 

Sparse and Low-rank Representation 

Regularization Methods 

B

px × py

Sparsity on B.   
Low Rank Sparsity 

bX

bY

EB

pλ (B) pλ (bX ) pλ (bY ) pλ (EB )
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Genetic and Imaging Networks 

B

px × py

Genetic Network 

f (B) f (B)T px × px

f (B) f (B)T

B

px × py f (B) py × py

Imaging Network 

f (B)T

f (B)T f (B)
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Factor Model 

E
n × py

Short-range  
Correlation 

Long-range  
Correlation 

Ei Λ ξi ηi

py ×1 py × q py ×1q ×1

ΣE
Λ

ΛT

Ση
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Simulation 

True B 

LASSO 

BLASSO 

G-SMuRFS 

GLRR3 

GLRR5 

Patterns Plus SVD SVD UN UN 
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ADNI 
749 AD/MCI/NC subjects,   93 ROIs 
40 AD candidate genes on the AlzGene web  
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ADNI 

Figure 4: Results of ADNI data: the posterior estimate of B̂ matrix after thresholding

out elements whose p� values are greater than 0.001 (left panel), BT

bin

B
bin

(middle

panel) and B
bin

BT

bin

(right panel) in the first row; and the � log10 p� value matrices

corresponding to B (left panel), U (middle panel), and V (right panel) in the second

row.

Figure 5: Results of ADNI data: the top 20 ROIs based on BT

bin

B
bin

and the first 3

columns of V. The sizes of the dots represent the rank of the ROIs.
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Sparse Projection Regression Model 
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Predictive Models 
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Big Data Integration 
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E: environmental factors 

G: genetic markers 
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Predictive models can either be used directly to estimate a response 
(output) given a defined set of features (input), or indirectly to drive the 
choice of decision rules. 

Predictive Modeling 

•  Determining the ‘correct’ features 

•  Fitting the predictive model 

•  Performance assessment 
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Pattern  
Classification 

Quantitative 
Diagnosis 

Functional information	

Morphological information	

Structural, functional, and multimodality image 
classification

   Diagnosis of Schizophrenia
   Diagnosis of Alzheimer’s disease (AD)
  Clinical outcomes 

CS8: Pattern classification of neuroimages	
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ADNI 
PET 

AD 

NC 

pipeline consists of average, spatially alignment, interpolatation to a standard voxel size, intensity

normalization, and smoothing to a common resolution of 8-mm full width at half maximum. The

dimension of the processed PET images is 79 ⇥ 95 ⇥ 69. Figure 5 shows some selected slices of

the processed PET images from 3 randomly selected AD subjects and 3 randomly selected NC

subjects.

5.2 Binary Classification

Figure 5: ADNI1 Pet Data. One row sequence of 2-D images belongs to one subject. The first
three rows respectively belongs to AD subjects and the rest belongs to NC subjects.

Our first goal is to apply MWPCR in classifying subjects from ADNI1 to AD or CN group based

on their FDG-PET images. Such goal is associated with the second primary objective of ADNI

31



The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

CS9: Predicting Conversion Time MCI-AD 

343 MCI patients were then followed 
over 48 months, with 150 participants 
progressing to AD.  
 
We extracted high dimensional MR 
imaging (volumetric data on 93 brain 
regions plus a hippocampal surface 
data), and whole genome data 
(504,095 SNPs from GWAS), as well 
as routine neurocognitive and clinical 
data at baseline. 
 
Conversion time from MCI to AD.   
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CS9: Predicting MCI-AD 
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CS9: GWAS for Conversion Time MCI-AD 

models, respectively. Since it indicates that moderate level of population stratification, we adjusted the test statistics using 

the estimated genetic inflation factor values. The adjusted P-values were considered in this GWAS. 

As Manhattan plots showed in Fig. 2, we did not observe any SNPs meeting the criteria commonly used in GWAS (p-

value< 5×10-8), however, at the 1×10-5 suggestive significance level, some SNPs were detected (Fig. 2 and Table 2). Based 

on the results of the model without APOE4, 47 SNPs were identified with suggestive significance and the most significant 

SNPs were rs62514059 and rs62514060 (p-values=1.5×10-7). The first part of Table 2 presented the P-values for the 

selected SNPs among the 47 significant SNPs. When the main effects of APOE4 were adjusted, 36 SNPs were detected. 

As the APOE4 non-adjusted model, the strongest association in the adjusted model was observed rs62514059 and 

rs62514060 (p-values=1.2×10-6). Meantime, both two models detected common SNPs such as rs562773 located in the 

WW domain containing oxidoreductase (WWOX), rs7278371 in the LOC101928233, and several SNPs located in the 

protein phosphatase 6, regulatory subunit 2 (PPP6R2). The APOE4 non-adjusted model detected other significant 

associations in rs78908045 in the MGC27382 and rs7810386 in the mitotic arrest deficient-like 1 (MAD1L1). One base-

pair position (bp) within Neuropeptide S receptor 1 (NPSR1) gene was also significant in the model. The adjusted model 

identified rs2947885 in the LINC01483 and rs12683859 in the AK3. 

Table 2 Association analysis results. 

APOE4 effects were not adjusted 

SNP Chromosome Position P-value Gene 

rs62514059 8 128638024 1.5×10-7  
rs78908045 1 78720788 1.4×10-6 MGC27382 
rs2694974 12 19954322 2.1×10-6  
rs7278371 21 44025176 4.0×10-6  
rs562773 16 79232220 4.5×10-6 WWOX 

rs74712657 22 50834181 4.8×10-6 PPP6R2 
ATAG 7 

 
6.4×10-6 NPSR1 

rs7810386 7 1952031 1.0×10-5 MAD1L1 
  

APOE4 effects were adjusted 

SNP Chromosome Position P-value Gene 

rs62514059 8 128638024 1.2×10-6 
 rs74712657 22 50834181 1.3×10-6 PPP6R2 

rs562773 16 79232220 2.6×10-6 WWOX 
rs11044865 12 19954488 3.7×10-6 

 rs3856926 3 189082792 4.0×10-6 
 rs12683859 9 4727444 5.5×10-6 AK3 

rs7278371 21 44025176 6.6×10-6 LOC101928233 
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the estimated genetic inflation factor values. The adjusted P-values were considered in this GWAS. 

As Manhattan plots showed in Fig. 2, we did not observe any SNPs meeting the criteria commonly used in GWAS (p-

value< 5×10-8), however, at the 1×10-5 suggestive significance level, some SNPs were detected (Fig. 2 and Table 2). Based 

on the results of the model without APOE4, 47 SNPs were identified with suggestive significance and the most significant 

SNPs were rs62514059 and rs62514060 (p-values=1.5×10-7). The first part of Table 2 presented the P-values for the 

selected SNPs among the 47 significant SNPs. When the main effects of APOE4 were adjusted, 36 SNPs were detected. 

As the APOE4 non-adjusted model, the strongest association in the adjusted model was observed rs62514059 and 

rs62514060 (p-values=1.2×10-6). Meantime, both two models detected common SNPs such as rs562773 located in the 

WW domain containing oxidoreductase (WWOX), rs7278371 in the LOC101928233, and several SNPs located in the 

protein phosphatase 6, regulatory subunit 2 (PPP6R2). The APOE4 non-adjusted model detected other significant 

associations in rs78908045 in the MGC27382 and rs7810386 in the mitotic arrest deficient-like 1 (MAD1L1). One base-

pair position (bp) within Neuropeptide S receptor 1 (NPSR1) gene was also significant in the model. The adjusted model 

identified rs2947885 in the LINC01483 and rs12683859 in the AK3. 

Table 2 Association analysis results. 

APOE4 effects were not adjusted 

SNP Chromosome Position P-value Gene 

rs62514059 8 128638024 1.5×10-7  
rs78908045 1 78720788 1.4×10-6 MGC27382 
rs2694974 12 19954322 2.1×10-6  
rs7278371 21 44025176 4.0×10-6  
rs562773 16 79232220 4.5×10-6 WWOX 

rs74712657 22 50834181 4.8×10-6 PPP6R2 
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Fig. 3 e Fig. 3 f 

Fig. 3. Regional association plots of the most significant loci associated with time to conversion when the APOE4 carrier 
variable was not included. Purple diamonds show the strongest association detected in the genome-wide analysis. Other 
circles indicate SNPs genotyped in this study, and their color reflects the linkage disequilibrium (r2) with the top SNP. 
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Fig. 4. Regional association plots of the most significant loci associated with time to conversion when the APOE4 carrier 
was included. Purple diamonds show the strongest association detected in the genome-wide analysis. Other circles 
indicate SNPs genotyped in this study, and their color reflects the linkage disequilibrium (r2) with the top SNP. 
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C10. Alzheimer’s Disease DREAM Challenge 1  
 

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL  

Alzheimers Disease Big Data DREAM Challenge 1 

Its goal is to apply an open science approach to rapidly identify accurate predictive AD 
 biomarkers that  can be used by the scientific, industrial and regulatory communities to  
improve AD diagnosis and treatment. 
 
Sub 1: Predict the change in cognitive scores 24 months after initial assessment.  
 
Sub 2: Predict the set of cognitively normal individuals whose biomarkers are suggestive 
 of amyloid perturbation. 
 
Sub 3: Classify individuals into diagnostic groups using MR imaging. 
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Alzheimers Disease Big Data DREAM Challenge 1  
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      Formulation 
Xi = {Xi (d) : d ∈ D}Data {(yi,Xi ) : i =1,,n}

yi = f (Xi )+ ε i
Disease Status, Survival 
Time, Treatment,  
Trajectories 

Interesting scientific questions include 
•  Determine disease status  
•  Identify earlier biomarker 
•  Predict disease trajectories 
•  Predict survival time (e.g., time-to-event)  
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      HRM versus FRM 
Xi = {Xi (d) : d ∈ D}

yi =θ0 + θ(d)
D
∫ Xi (d)m(d)+εi

Data 

Strategy 1: Discrete Approach  
                   (High-dimension Regression Model (HRM)) 

Strategy 2: Functional Regression Model (FRM) 

{(yi,Xi ) : i =1,,n}
yi =< Xi,θ > +εi
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Key Conditions: 
•  Sparsity of S 
•  Restricted Isometry Property (RIP) for design matrix X 

HRM 

S = { j :β j ≠ 0}
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      FRM 

yi =θ0 + θ(d)
D
∫ Xi (d)m(d)+εi

Strategy 2: Functional Approach 

yi =θ0 + θk
k=1

∞

∑ ψk (d)
D
∫ Xi (d)m(d)+εi

θ(d) = θk
k=1

∞

∑ ψk (d)

Kθ = {θ(d) = θk
k=1

∞

∑ ψk (d) : (θ1,)∈ 
2} C(d,d ') =Cov(X(d),X(d ')) = λkζk (d)ζk (d ')

k=1

∞

∑

Basis Methods: fixed and data-driven basis functions 
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Key Conditions 
Key Conditions: an excellent set of basis functions 

•  Sparsity of basis representation  

•  Decay rate of spectral of         or 

{θk : k =1,}

θ(d) ≈ θk
k=1

K

∑ ψk (d)

C

K << n

K1/2CK1/2

Kθ = {θ(.)} KX = {X(.)}Alignment 
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HRM 
Y | X ~  Exponential Family(µ,φ)
g(µ) = θ0

T Z+ < X,β0 >

Total Variation Penalty:  
 

Parameter Space

Parameter Space

Assume that �0 is a function of bounded variation in ⌦:

||�0||TV

= sup
⇢

Z

⌦

�0(u, v )div f (u, v )dudv : f 2 C

1
c

(⌦;R2), |f |1  1
�

.

If �0 is di↵erentiable in ⌦, �0 belongs to the Sobolev space
W

1,1.

The BV(⌦) is much larger than W

1,1 and contains many
interesting piecewise continuous functions with jumps and
edges.

The space of bounded variation is not separable. Petrushev et
al. (1999) proved a deep and nontrivial result on BV(⌦): The
Haar wavelet coe�cients of �0 2 BV(⌦) are in weak `1.

X. Wang (Purdue) Image Regression Math Stat Seminar 7 / 29

Tucker decomposition 

CP decomposition 

β0
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Total Variation 

Parameter Space

Parameter Space

The total variation has been introduced in Computer Vision
first by Rudin, Osher and Fatemi, 1992.

Many real images with edges have small total variation since
image edges usually reside in a low-dimensional subset of pixels.

It has proved to be quite e�cient for regularizing images
without smoothing the boundaries of the objects.

X. Wang (Purdue) Image Regression Math Stat Seminar 10 / 29
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True Image 
Simulations

True Images

Triangle Oval

T−shape checkerboard

Figure : The true coe�cient images used for the simulation study.
X. Wang (Purdue) Image Regression Math Stat Seminar 21 / 29
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Results 

Figure 5: The estimated coe�cient images from six methods when q = 0.5 and n = 300: TV (Top
row); Lasso (Second row); Lasso-Haar (Third row); Matrix regression (fourth row); FPCR (Fifth
row); and WNET(Sixth row).

18

Figure 5: The estimated coe�cient images from six methods when q = 0.5 and n = 300: TV (Top
row); Lasso (Second row); Lasso-Haar (Third row); Matrix regression (fourth row); FPCR (Fifth
row); and WNET(Sixth row).

18

TV (Top row); Lasso (Second row); Lasso-Haar (Third row); 
 Matrix regression (fourth row); FPCR (Fifth row); and WNET(Sixth row).  
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ADNI 

Real Data Analysis

ADNI Data

The sample in our investigation includes n = 403 subjects: 223
healthy controls (HC) (107 females and 116 males) and 180
individuals with AD (87 females and 93 males).

The image predictor X

i

is the 2D representation of left
hippocampus. The covariate vector Z

i

includes constant(=1),
gender (Female=0 and Male = 1), age (55—92), and behavior
score (1—36).

Given (X
i

,Z
i

), Y

i

is assumed to follow a Bernoulli distribution
with the success probability p

i

satisfying

logit(p
i

) = hX
i

,�0i + ✓T0 Z

i

for i = 1, . . . ,n.

X. Wang (Purdue) Image Regression Math Stat Seminar 24 / 29
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Estimated Coefficient Maps 
Real Data Analysis

Analysis

20 40 60 80 100 120 140
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(c) 

(d) 

(e) 

Figure : Estimated coe�cient images for hippocampus data based four
methods: the 2d-representation of TV estimator (a) and the surface
representation of TV estimator (b), Lasso estimator (c), Lasso-wavelet
estimator (d), and matrix regression estimator (e).

X. Wang (Purdue) Image Regression Math Stat Seminar 27 / 29
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Functional Linear Cox Regression Model 
•            the i-th hazard function, is defined as the event rate at 

time t conditional on survival until time t or later.  

•  The covariates are multiplicatively related to the hazard. 

•             denotes the image data,        denotes the scalar 
covariates 

•  The hazard function of the i-th subject under Cox regression is 

hi (t),

Xi (s), zik

hi (t) = h0 (t)exp( zikγ k +
k=1

p

∑ Xi (s)β(s)ds
S
∫ )
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      Formulation 

Xi = {Xi (d) : d ∈ D}Data {(yi,Xi ) : i =1,,n}
yi = f (Xi )+ ε i

•  Is this the right X space for prediction? 
 
•  How to deal with the curse of dimensionality?  

•  How to choose the loss function?    

Disease Status  
Survival Time  

Treatment  
Trajectories 
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Path Diagram Figure 2: Path diagram of SILFM estimation procedure.

Y

X

εy

X~

Z

εx

STAGE I

STAGE I

STAGE III

STAGE II

48

yi = f0 (Xi )+ ε iy yi = f (zi )+ ε i

High-dimensional &  
Strongly Spatial  
features 

Moderate dimensional & 
Strong Spatial features 

Small dimensional & 
relatively independent 
features 
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X

MWPCR 

 (X −1N µx
T )Q1!QK =UDV + E

 Q1!QK

U

D

V

N

px

Model 

yi = f (Xi )+ ε i = g(ui )+ ε i
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MWPCR 

GPCA 

Prewhiten 

say 85%. Compared with the weighted PCA algorithm in (Skočaj et al., 2007), our proposed GPCA

algorithm computes PCs more e�ciently without rotational ambiguity.

GPCA Algorithm

(a) Initialize V and A;

(b) Given V , conduct SVD on X̃R,`V = U1D1V
T
1 , then A = U1V

T
1 ;

(c) Given A obtained from (b), update V = X̃T
R,`A;

(d) Repeat the steps (b) and (c) until convergence;

(e) Standardize the final V to get V` and X̃R,`V` = A` = U`D`.

For ultra-high dimensional data, we consider a regularized GPCA by iteratively solving a single-

factor two-way regularized matrix factorization. Specifically, for a given K, we minimize with

respect to (U`, D`, V`) the following objective function given by

||X̃R,` �
K
X

k=1

dk,`uk,`v
T
k,`||2 + �u

K
X

k=1

P1(dk,`uk,`) + �v

K
X

k=1

P2(dk,`vk,`) (10)

subject to u

T
k,`uk,`  1 and v

T
k,`vk,`  1 for all k. We use adaptive lasso penalties for P1(·)

and P2(·) and then iteratively solve (10) (Aharon et al., 2006). For each k0, we define E`,k0 =

X̃R,` �
P

k 6=k0
dk,`uk,`v

T
k,` and minimize

||E`,k0 � dk0,`uk0,`v
T
k0,`||

2 + �uP1(dk0,`uk0,`) + �vP2(dk0,`vk0,`) (11)

subject to u

T
k0,`

uk0,`  1 and v

T
k0,`

vk0,`  1. By using the sparse method in Lee et al. (2010), we

can calculate the solution of (11), denoted by (d̂k0,`, ûk0,`, v̂k0,`). In this way, we can sequentially

compute (d̂k,`, ûk,`, v̂k,`) for k = 1, . . . ,K. Moreover, we may drop the penalty function P1(du) by

setting �u = 0 to solely obtain a sparse solution of v.

10

 
!XR = (X −1N

⌢µx
T )Q1#QK

yi = f (Xi )+ ε i = g(ui )+ ε i

 QK!Q1(xi − µx ) = Λui + ei

Regression 
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Spatially Weighted PCA 

Guo, Ahn, and Zhu (2014) JCGS 
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Spatially Weighted PCA 
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Spatially Weighted PCA 
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Simulation I: Classification 
Class 0 Class 1

Figure 1: Simulation Study I: the left and right panels are respectively true images for

classes 0 and 1. The white and green color in the left panel respectively corresponds

to �0(g) = 0 and 1 for g = (g1, g2, g3) 2 20 ⇥ 20 ⇥ 10. The white, green and red

color in the right panel respectively corresponds to �0(g) + �1(g) = 0, 1, and 2 for

g = (g1, g2, g3) 2 20⇥ 20⇥ 10. The di↵erence between Classes 0 and 1 images lies in the

red cuboid region.

For each type of noise, we simulate 100 images by linear model (1), where 60 images

are from Class 0 and the rest 40 images are from Class 1. Then we use SWPCA to get

Table 1: Misclassification rates for PCA and SWPCA under the di↵erent number of PCs.

Noise Number of PCs PCA SWPCA1 SWPCA2 SWPCA3

Type I 5 0.40 0.11 0.09 0.10

7 0.40 0.13 0.11 0.10

10 0.40 0.13 0.11 0.10

Type II 5 0.40 0.04 0.08 0.03

7 0.39 0.03 0.09 0.04

10 0.38 0.03 0.07 0.04

Type III 5 0.40 0.13 0.10 0.09

7 0.41 0.13 0.10 0.10

10 0.41 0.13 0.10 0.10

2

Xi (d) = β0 (d)+ β1(d)yi + ε i (d)

Type I Type II Type III 

0    White 
1   Green 
2   Red  

N(0,4) Short-range 
correlation 

Long-range 
correlation 
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Class 0 Class 1

Figure 1: Simulation Study I: the left and right panels are respectively true images for

classes 0 and 1. The white and green color in the left panel respectively corresponds

to �0(g) = 0 and 1 for g = (g1, g2, g3) 2 20 ⇥ 20 ⇥ 10. The white, green and red

color in the right panel respectively corresponds to �0(g) + �1(g) = 0, 1, and 2 for

g = (g1, g2, g3) 2 20⇥ 20⇥ 10. The di↵erence between Classes 0 and 1 images lies in the

red cuboid region.

For each type of noise, we simulate 100 images by linear model (1), where 60 images

are from Class 0 and the rest 40 images are from Class 1. Then we use SWPCA to get

Table 1: Misclassification rates for PCA and SWPCA under the di↵erent number of PCs.

Noise Number of PCs PCA SWPCA1 SWPCA2 SWPCA3

Type I 5 0.40 0.11 0.09 0.10

7 0.40 0.13 0.11 0.10

10 0.40 0.13 0.11 0.10

Type II 5 0.40 0.04 0.08 0.03

7 0.39 0.03 0.09 0.04

10 0.38 0.03 0.07 0.04

Type III 5 0.40 0.13 0.10 0.09

7 0.41 0.13 0.10 0.10

10 0.41 0.13 0.10 0.10

2

Simulation I: Classification 
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Simulation I: Classification 

the 5, 7 and 10 PCs, to construct the low dimensional representations of these images

data. After that, the linear regression is used here to do classification analysis on these

low dimensional spaces. For SWPCA, we tried three types of weights here: the first one

just contains the local kernel function, denoted as SWPCA1; the second one just contains

the similarity kernel function, denoted as SWPCA2; the third one combine the local and

similarity kernel functions together, denoted as SWPCA3. Then leaving one out cross

validation is used to get the classification error. The simulation results for SWPCA1,

SWPCA2 and SWPCA3 are respectively shown in the last three columns of Table 1.

In fact, Table 1 shows that the classification errors for SWPCA are quite stable for the

di↵erent number of PCs. This means that SWPCA is a quite robust dimension reduction

method. In addition, SWPCA3 is slightly better than SWPCA1 and SWPCA2 because

SWPCA3 combines the local and similarity kernels together. Here we also use PCA to do

dimension reduction and then do classification analysis on the low dimensional space. The

results for PCA is shown on the third column of Table 1. The performance of SWPCA is

overall much better than PCA.

Table 2: Classification performance comparison for SWPCA and other classification meth-

ods

Noise sLDA sPLS SLR SVM ROAD PCA SWPCA

Type I 0.28 0.43 0.45 0.38 0.36 0.36 0.10

Type II 0.27 0.08 0.18 0.26 0.08 0.45 0.03

Type III 0.52 0.30 0.61 0.60 0.50 0.35 0.09

Here we also compare classification performance of SWPCA with other classification

methods. The first compared classification method is sparse discriminant analysis (Clem-

mensen et al., 2011) with the corresponding software sLDA. The classification errors for

sLDA in the second column of Table 2 are more than or equal to 0.27 for three di↵erent

types of noises. Since SWPCA3 are slightly better than SWPCA1 and SWPCA2, then

we present the misclassification rates for SWPCA3 for 5PCs in the last column of Table 2,

which are less than or equal to 0.10. The simulation results confirm the better perfor-

mance of SWPCA, comparing with sLDA. The other compared classification methods are

respectively sparse partial least squares (sPLS) analysis (Chun and Keleş, 2010), sparse

logistic regression (SLR) (Yamashita, 2011), support vector machine (SVM) (Hsu et al.,

3

sLDA: sparse discriminant analysis 
sPLS: sparse partial least squares analysis 
SLR:   sparse logistic regression 
SVM:  support vector machine  
ROAD: 
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ADNI 
PET 

AD 

NC 

pipeline consists of average, spatially alignment, interpolatation to a standard voxel size, intensity

normalization, and smoothing to a common resolution of 8-mm full width at half maximum. The

dimension of the processed PET images is 79 ⇥ 95 ⇥ 69. Figure 5 shows some selected slices of

the processed PET images from 3 randomly selected AD subjects and 3 randomly selected NC

subjects.

5.2 Binary Classification

Figure 5: ADNI1 Pet Data. One row sequence of 2-D images belongs to one subject. The first
three rows respectively belongs to AD subjects and the rest belongs to NC subjects.

Our first goal is to apply MWPCR in classifying subjects from ADNI1 to AD or CN group based

on their FDG-PET images. Such goal is associated with the second primary objective of ADNI

31
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ADNI 

2003), Road (Fan et al., 2012) and PCA (with 5PCs). The misclassification rates are

respectively shown from the 2th to the 6th column of Table 2, which are larger than the

classification errors by SWPCA in the last column. These simulation results furthermore

confirm the better performance of SWPCA in classification.

1.2 Real Data Analysis

This section applies SWPCA into the classification analysis of real data and further

compares the classification performance of SWPCA with other classification methods.

The real data is Alzheimer’s Disease Neuroimaging Initiative (ADNI) pet data (Jagust

et al., 2010). Alzheimer’s Disease Neuroimaging Initiative is a worldwide project, launched

in 2003. The goal of ADNI project is to develop biological markers to track the progres-

sion of Alzheimer’s disease (AD) and helps the the AD treatment. Multiple research

groups, including National Institutes of Health, the Food and Drug Administration, drug

and medical-imaging companies, universities and nonprofit groups, have contributed their

findings of the biological markers to the understanding of the progression of Alzheimer’s

disease in the human brain. Here we consider the real data, which contains 196 79⇥95⇥69

3D-images.

Leave one out test: 196 79*95*69 3D-images are split into a training set with

195 images and a test set of one image. Simulation is repeated 196times, error is

average error on predicting testing image.

Table 3: Results of Real Data: average misclassification rates.

sLDA sPLS sLogistic SVM ROAD PCA SWPCA

0.255 0.163 0.179 0.168 0.189 0.194 0.117

2 Regression Analysis

This section compare the performance of SWPCA with other dimension reduction meth-

ods in the latent variable regression.

4

94 AD subjects and 104 NC subjects 
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 fPCA may not work in many cases.  
 
 
 Modified fPCA may work in some of these cases.  

Take-home Message 
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ASA: Statistics in Imaging Section 

SAMSI  
     2013 Neuroimaging Data Analysis  
     2015-2016 Challenges in Computational Neuroscience 
 

Thank  
You!! 


