i

UNC

SCHOOL OF
PUBLIC HEALTH

y, Big Data Integration in Biomedical Studies

Hongtu Zhu, Ph.D
Department of Biostatistics™ and Biomedical Research Imaging Center?*
The University of North Carolina at Chapel Hill,

Chapel Hill, NC 27599, USA

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



V. Outline
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o, Big Data

"What? Wikipedia for Big data

Big data refers data sets with sizes beyond the ability of commonly used
software tools to capture, curate, manage, and process data within a tolerable
elapsed time.

Big data is a set of techniques and techologies that require new forms of

integration to uncover large hidden values from large daatsets that are diverse,
complex, and of a massive scale

Size?
A few dozen terabytes to many petabytes of data.

Characteristics?

Volume, Variety, Velocity, Variability, Veracity, Complexity, ....
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2 Big Data or Pig Data

Why?
Answer questions of personal or scientific interest.
What matters?

Ensuring accurate and appropriate data collection.
Correct variables, Collection methods (techniques and sampling),

Quality assurance and Quality control

Does it work?

Big data does not work in most cases, since we do not know
(i) which variables (information at which scale) are critical;
(ii) whether we have capability to collect such information.
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) Big Data Integration

Big data integration is to integrate multiple sources of data to
improve knowledge discovery.

Data Sources Discovery:

1 1

Data Exploration (e.g., meta analysis):

(i) the use of prior knowledge,- and its efficient storage;

(if) the development of statistical methods to analyze
heterogeneous data sets;

(iii) the creation of data explorative tools that incorporate both
useful summary statistics and new visualization tools.
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Human Genome Project

The HGP aims to determine the sequence of chemical base pairs which
make up human DNA and identify and map all of the genes of the hiiman

genome. nature

1000 Genomes Project ‘f Sé'r%‘r%'é

TIND e

Encyclopedia of DNA Elements Project (ENCODE)

The Cancer Genome Atlas Project (TGCA) is to generate
insights into the heterogeneity of different cancer subtypes
by creating a map of molecular alternations for every type of cancer at

multiple levels. /N
Immunological Genome Project (ImmGen) l

mRNA -w - — -
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; HBP and BRAIN
€D . |
Q‘,}'iy Human Brain Project

aims to simulate the complete human brain on
Supercomputers to better understand how it functionsgi=1-¥:\|\W 1T T
Opportunities

The Brain Research through

Advancing Innovative Neurotechnologies or BRAIN,
aims to reconstruct the activity of every single neuron as they fire
simultaneously in different brain circuits, or perhaps even whole brains.
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Big Neuroimaging Data

NIH normal brain development
1000 Functional Connectome Project
Alzheimer’s Disease Neuroimaging Initiative
National Database for Autism Research (NDAR)
Human Connectome Project
Philadelphia Neurodevelopmental Cohort
Genome superstruct Project

SLACTTRTNNT
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- NIH Big Data tO [NIg]) National Institutes of Health
nowledge (BD2K) o

i .

To facilitate broad use of biomedical digital assets by making tRem« ,
accessible, and citable

The four aims of BD2K are

To conduct research and develop the methods, software, and tQols neede
analyze biomedical data.

To enhance training in the development and use of methods a
for biomedical Big Data science

To support a data ecosystem that accelerates discovery as pargoi :
enterprise. T
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Precision Medicine

Precision medicine (PM) is a medical model that proposes the customization

of healthcare—with medical decisions, practices, and/or products being tailored
to the individual patient.

Precision Medicine refers to the tailoring of medical treatment to the individual
characteristics of each patient. It does not literally mean the creation of drugs
or medical devices that are unique to a patient, but rather the ability to classify
individuals into subpopulations that differ in their susceptibility to a particular
disease, in the biology and/or prognosis of those diseases they may develop,
or in their response to a specific treatment.

PM (wiki)
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Dream Challenges

http://dreamchallenges.org

Alzheimer's Disease Big Data DREAM Challenge

» ; /\ BrightFocus" Ray and Dagmar Dolby  pemwrrpwsgym nature
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ER  SOLUTIONS MADE REAL Cancer Center
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Study Design

Scientific Questions

Design: cross-sectional studies;
clustered studies including

longitudinal and twin/familial studies;

Longitudinal Data P
4D /01—>3 g p3_>5 20
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W, Imaging Data

Structural Functional
MRI MRI (task)

- Variety of acquisitions

- Measurement basics
- Limitations & artefacts

- Analysis principles

: : - Acquisition tips Functional
leli\’,lljs:on MRI
(resting)
PET EEG/MEG CT Calcium
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Multi-Omic Data

* SNP

e CNV

* LOH

e Genomic
rearrangement

® Rare variant

* DNA methylation

e Histone modification

e Chromatin
accessibility

* TF binding

* Gene expression

e Alternative splicing

¢ Long non-coding
RNA

* Small RNA

* Protein
expresssion

e Post-translational
modification

e Cytokine array

* Metabolite
profiling in
serum, plasma,
urine, CSF, etc.

v

* miRNA

v

v

v
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Transcription Expression Translation Function

Ritchie et al. (2015).
Nature Review Genetic

Phenome

e Cancer

* Metabolic
syndrome

e Psychiatric
disease
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" Clinical Data and Acquisition

Clinical Data: a variety of clinical sources to present a unified view
of a single patient.

clinical laboratory test results, patient demographics, pharmacy information,
hospital admission, discharge and transfer date, progress report, etc.

Clinical Acquisition:

« Paper or electronic medical records
 Paper forms completed at a site

* Interactive voice response systems
 Local electronic data capture systems
 Central web based systems
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2 Data Exploration

Data Analysis

« Single Level Data Analysis for imaging or omics data, e.g.,
denoise, segmentation, cluster, network,

« Multi-level Data Analysis for across imaging or omics data

- Data Integration Analysis for imaging, clinical, and omics data.
Multi-staged analysis
Meta-dimensional analysis

Mediation/moderation analysis

Software/Computing Language/
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A

Apache Spark

Data growing faster than processing speeds

Only solution is to parallelize on large clusters
» Wide use in both enterprises and web industry

- st - 'I, = -_ _;;. W= -

How do we program these things? L.

= i : 2 T

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



"> Cloud Computlng

lllll A-..

SERVICES

- Shared pool of configurable computing resources
 On-demand network access
* Provisioned by the Service Provider

Adopted from: Effectively and Securely Using the Cloud Computing Paradigm by peter Mell, Tim Grance
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N, Big Data Integration

SIMPLY SUSTAINABLE
BUSINESSMODEL _—WRA

I: imaging/device

=> Selection

G: genetic/genomics

D: disease

http://en.wikipedia.org/wiki/DNA_sequence
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Big Data Integration

Medical Informatics
& Management

o) Disease ) Medical Industry

Etiology Care
Prevention Policy
Treatment System

Science
Insurance
Economics

Pharmaceutical
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A Big Data Integration

SIMPLY SUSTAINABLE
BUSINESSMODEL _—WRA

1.2e+08 1.6e+08 “SHp

|=>M

G: genetic markers
D: disease

http://en.wikipedia.org/wiki/DNA_sequence
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A

Imaging and Statistical Analysis

Image
Reconstruction

Image
Registration

Image ‘ Statistical
Smoothing Analysis

Raw Images
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Individual Imaging Analysis

Imaging Construction Image Segmentation

Example: Airway Segmentation from CT

Marc
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Registration

)

Hibar, Dinggang, Martin

Group Imaging Analysis

Prediction

NC/Diseased

Imaging Genetics

Imaging

Genetics

Candidate ROI

Many ROI

Voxelwise

Candidate SNP

Candidate Gene

S -

@l

Genome-wide SNP
—
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Noisy Imaging Data

Key Features

Infinite Dimension

Spatial Smoothness

Spatial Correlation

Spatial Heterogeneity




"Noisy’ Spatial Maps
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Image Registration

Image registration is the process of transforming

different sets of data into one coordinate system.
Given a reference image R and a template image T,
find a reasonable transformation Y, such that the
transformed image T[Y] is similar to R.

Establishing a geometric transformation
X'=h(x) =x"=Xx+ AX
relating points in one image to points in another.

Source Image Target Image

Dinggang The UNIVERSITY of NORTH CAROLINA af CHAPEL HILL



LPBA40 IBSR18

Brain image dataset with
manually labeled ROls

Registration Errors

Method LPBA40 IBSR18 CUMC12 MGH10
FLIRT 59.29+11.94 39.71+13.00 39.63+11.51 46.24+14.03
AIR 65.23+10.72 41.41+13.35 42.52+11.90 47.99+14.10
ANIMAL 66.20+10.17 46.31+13.51 42.78£11.95 50.40+15.21
ART 71.8549.59 51.54+14.42 50.54+12.16 56.10+15.33
D. Demons 68.9349.23 46.83+13.37 46.45+11.46 52.28+14.94
FNIRT 70.07+9.80 47.63+14.15 46.53+12.26 49.54+14.58
IRTK 70.02+10.26 52.09+14.97 51.75+12.45 54.90+15.70
JRD-fuild 70.0249.83 48.95+13.87 46.37+12.06 52.33+14.81
ROMEO 68.49+10.12 46.48+13.91 44.49+13.04 51.23+14.55
SICLE 60.41+16.21 44.53+13.03 42.08+12.19 48.36+14.31
SyN 71.46+10.86 52.81+14.85 51.63£12.60 56.83+15.81
SPM_N! 66.97+10.14 42.10+13.25 36.70+12.43 49.77£14.54
SPM_N? 57.13+14.95 37.18+14.11 42.93+11.75 43.16+£15.88
SPM_US3 68.62+9.00 45.29+12.60 44.81«11.35 49.61+£14.08
SPM_D* 67.15+18.34 54.02+14.70 51.98+13.91 54.314+16.05
S-HAMMER 72.48+8.46 55.47+11.27 53.74+9.82 58.20+15.03

(11 SPM 5 (“SPM2-type” Normalization)
21 SPM 5 (Normalization) 1 SPM 5 (Unified Segmentation) ! SPM 5 (DARTEL Toolbox)

[1] Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B., Chiang, M.-C., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song,
J.H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann, J.J., Parsey, R.V., 2009. Evaluation of 14

nonlinear deformation algorithms applied to human brain MRI registration. Neurolmage 46, 786-802.
[2] Wu, G., Kim, M., Wang, Q., Shen, D.: Hierarchical Attribute-Guided Symmetric Diffeomorphic Registration for MR Brain Images. MICCAI 2012,

Nice, France (2012)
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AV Noisy Spatial Correlation
Long-range Correlation Short-range Correlation
.
-
“Unmodeled effects” “Signal Processing”
Daniel
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Wy,

Osteoarthritis (OA) Cartilage Loss

Noisy Spatial Heterogeneity

Native image space Common atlas space
3D knee MRI

3D segmentation 3D thickness map 3D thickness map 2D thickness map

I

SR B B
Marc
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Complex Data Structure

Multivariate Imaging Measures
Smooth Functional Imaging Measures
Whole-brain Imaging Measures
4D-Time Series Imaging Measures
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Image-on-sScalar Vlodels
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4 Big Data Integration

SIMPLY SUSTAINABLE il
BUSNESSMODEL _— Wk

—

G: genetic markers

D: disease

http://en.wikipedia.org/wiki/DNA_sequence
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Reading Materials
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2. Luo, X. C., Zhu, L. X, Kong, L., Zhu, H.T. Functional Nonlinear Mixed Effects Models For Longitudinal Image Data.

Information Processing in Medical Imaging (IPMI) 2015.

Liang, J. L., Huang, C., and Zhu, H.T. (2014). Functional single-index varying coefficient models. In submission.

4. Zhu, HT,, Fan, J., and Kong, L. (2014). Spatial varying coefficient model and its applications in neuroimaging data with
jump discontinuity. JASA, 109, 977-990, 2014.

5. J. W. Hyun, Li, Y. M., Gilmore, J., Lu, Z.H., Styner, M., and Zhu, H.T. SGPP: Spatial Gaussian Predictive Process Models
for Neuroimaging Data. Neurolmage, 89, 70-80, 2014.

6. Yuan, Y., Gilmore, J., Geng, X. J., Styner, M., Chen, K. H., Wang, J. L., and Zhu, H.T. (2014). Fmem: Functional mixed
effects modeling for the analysis of longitudinal white matter tract data. Neurolmage 84, 753-764.

7. Yuan, Y., Gilmore, J., Geng, X. J., Styner, M., Chen, K. H., Wang, J. L., and Zhu, H.T. (2013). A longitudinal functional
analysis framework for analysis of white matter tract statistics. Neurolmage, 23:220-31, 2013.

8. Yuan, Y., Zhu, H.T., Styner, M., J. H. Gilmore., and Marron, J. S. (2013). Varying coefficient model for modeling diffusion
tensors along white matter bundles. Annals of Applied Statistics. 7(1):102-125..

9. Zhu, H.T, Li, R. Z,, Kong, L.L. (2012). Multivariate varying coefficient models for functional responses. Ann. Stat. 40,
2634-2666.

10. Hua, Z.W., Dunson, D., Gilmore, J.H., Styner, M., and Zhu, HT. (2012). Semiparametric Bayesian local functional models
for diffusion tensor tract statistics. Neurolmage, 63, 460-674.

11._Zhu, HT., Kong, L., Li, R., Styner, M., Gerig, G., Lin, W. and Gilmore, J. H. (2011). FADTTS: Functional Analysis of
Diffusion Tensor Tract Statistics, Neurolmage, 56, 1412-1425.

12._Zhu, H.T., Styner, M., Tang, N.S., Liu, Z.X., Lin, W.L., Gilmore, J.H. (2010). FRATS: functional regression analysis of DTI

tract statistics. [IEEE Transactions on Medical Imaging, 29, 1039-1049.
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Pls: Drs. John H. Gilmore and Weili Lin

To track changes in behavior with brain structure, connectivity, and function,
in order to characterize the progression from primary changes to
subsequent clinical presentation, and to identify predictors of divergence
from the typical trajectory.

UNC Early Brain Development Studies

Singletons, twins, high risk

A longitudinal prospective study

900 young children aged 0 to 6 years

Recruited prenatally

— Exclusion: ultrasound abnormality, significant fetal/
maternal medical problem, substance abuse

3TMRI (Seimens Allegra)

—T1, T2, DTI, resting state fMRI

Scanned during normal sleep(no meds)

Ear protection, head in vac-fix device

Success rate: 87% @ 2 weeks, 71%-@-1-year,-62%at 2 years
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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Representative T2-weighted images (upper row) from a subject imaged over the course of the first
two years of life along with the segmented left and right ventricles (lower row) are shown.

Objectives: Chart changes in brain structure

Bompard L, Xu S, Styner M, Paniagua B, et al. (2014) Multivariate Longitudinal Shape Analysis of Human Lateral Ventricles
during the First Twenty-Four Months of Life. PLoS ONE 9(9):
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CS1: Longitudinal Analysis of Lateral Ventricles

o - w IS w oo ~ o

(01)

(24)

m Number of subjects
u Number of left ventricles
|| | u Number of right ventricles

(57)

(8-10) (1113)

age inmonths

(17-20)

(24- 27)

4 5 6 7

Number of total scan

The number of subjects imaged and
the number of right and left ventricles

available for analysis at each age point
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The total intracranial volume (ICV) and
the left and right ventricular volumes with age

are shown in A and B, respectively.
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12 12 ; 12

Qualitative comparisons of the shape changes of the right and left lateral ventricles between two
contiguous imaging time points are shown.
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CS2: White Matter Tract Development

2 week 1 year

o
® e
e S el

@) (b1) (a2) (b2)
Objectives: Dynamic functional effects of covariates of interest on white

—)

@3)  (b3)

matter tracts.

genu, splenium, motor
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2 CS2: White Matter Tract Development
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2 CS2: White Matter Tract Development
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N ANDI

NC vs. MCI MCI vs. AD NC vs. AD

(A) Left Cingulum

Yan, Chuang, Thompson, Zhu (C) Fornix
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2 CS3: Development of Brain’s Default Network

 Purposes

¢ To delineate the emergence and development of one of the
most salient functional networks-the default network during
the first two years of life.

« Subjects and imaging parameters

¢ 71 normal subjects including 20 neonates (9M, 2412days (SD));
24 1-year-olds (16M, 131mon) and 27 2-year-olds (17M,
251mon); 15 adut subjects (11M, 25~35 years) were also
included for comparison.

¢ For the rfcMRI studies, a T2*-weighted EPI sequence was used
to acquire images. The imaging parameters were: TR=2sec,
TE=32 ms; 33 slices; and voxel size =4x4x4 mma3. This
sequence was repeated 150 times so as to provide time series
images.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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Buckner et al. (2008)
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Results-the Emerging Default Network

Left Right

A primitive and incomplete default network is observed in 2wk olds, followed by
a marked increase in the number of brain regions exhibiting functional connectivity

and the percent of functional connection at 1yr olds, and finally becoming a similar
network as that reported in adults at 2yr olds.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Gt 3

7

)

 Purposes
Use DTI to detect traumatic axonal injury.
« Subjects

¢ 235 normal subjects were also included for comparison.
¢ Global measures (mean, median) and ROl measures

CS4: Detection of Traumatic Brain Injury

OFFClus OFF
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A7 CS4: Detection of Traumatlc Braln Injury
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Data Structure

Smoothed Functional Data

Covariates (e.g., age, gender, diagnostic)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Noisy Piecewise Smooth Function with Unknown Jumps and Edges

Neuroimaging Data with Discontinuity

Subjectl]  Subject2

Covariates (e.g., age, gender, diagnostic, stimulus)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



> Challenging Issues

yi(S): f(‘xi B (S))@gi(‘xi9s) sES

« Complicated domains (e.g., surface mesh)

« Complicated objects (e.g., matrix response)

* Longitudinal and familial studies (e.g., heritability)

« Short-range to medium-to-long-range spatial correlations

« Asymptotic theory (e.g., simultaneous confidence bound,
minimax theory)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



> Longitudinal Fiber Tracts

Longitudinal Data Spatial-temporal Process
¥ WACH?Y
Y, (8.1,)
Yi(8,4,)
> S

Functional Mixed Effect Models
y.(s,t)=x, (t)TB (s)+z, (t)T E.(s)+n,(s,t)+&(s,1)

Objectives:
Dynamic functional effects of covariates of interest on functional response.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



2 Functional Mixed Process Models

Decomposition:

y.(8,1) =X, (1) B (s)+ Z, (1) éi(s) +1.(s,t)+E,(s,7)

!

Global Noise Components Local Correlated Noise

n;(%,*)~SP0,Z,), §(*)~SP0,Z,) ¢ (®)~SP,2)),

Jn{vec(B(s)- B(s)- 0.50(H?)):s € D} —£5G(0,% ,(s,5")

Ying et al. (2014). Neurolmage.
Zhu, Chen, Yuan, and Wang (2014). Arxiv.
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~ Functional Nonlinear Mixed Effects Model

Decomposition:

yi,j(S) = f (¢, (S)axi,j)+€i,j(s)a ¢, (s)= p(s)+b,(s)

N

Nonlinear Function Mixed Effect Fixed Effect Random Effect
Asymptotic Normality:

Jn{vec(f(s)- B(s)-O(h*)):d € D}—L—>G(0,%,,(s,5"))

Luo, Zhu, Kong, and Zhu (2015). IPMI

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



Y Simulations
Nn=50 and o=0.01 Nn=50 and o=0.05
o~ _|| — FNMEM o _|| — FNMEM
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Plots of power curves. Rejection rates based on score bootstrap method are calculated
using FNMEM and NMEM, with sample size 50 and 100 at significant levels 5% and 1% .
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W SVCM

Decomposition:

y(d)=x"B(d)+n (d)+€(d),d e D

\

Piecewise Smooth Short-range Correlation
Varying Coefficients

3D vol /
Long-range Correlation o ED):(Jrl;an::z
BdEL pw-~spox)  SO7OR)

Covariance operator:

S (d,d")=%,(d,d)+2,(d,d)
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SVCM

Cartoon Model

* Disjoint Partition

B(d) = (131(d)a' ) 'nBK (d))T

D=u, D, andD,ND,=¢

* Piecewise Smoothness: Lipschitz condition

« Smoothed Boundary

 Local Patch

* Degree of Jumps
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W, SVCM

Least Squares Estimates B(d; h,) = (i xx! )‘li x.y.(d)
i=1 i=1

Smoothing residual images n(d)=Sy.(d)- x,-Té(d; h,))

Estimate covariance operator in (d,d") = Eﬁi(a’ m.(d "' /n

(A (d):1=1L o0}

Adaptively Smoothing LSEs

JICOED WIRICERLCIN) RTICEALY

lcul ndard deviation Propogation-Seperation Method
Calculate standa J. Polzehl and V. Spokoiny, (2000,2005)
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\Z

Adaptive Smoothing Methods

At each voxel d

5 (doh o Dereaan "B A B ()
AR z' W(d,d',h)
d'eB(d.h) J ]

+ Increasing Bandwidth O < hO < hl << hS — 7’0

- Adaptive Weights J/ra)(dad';hl)
l ra)(d7d|,h2)
B.(d;hy) - o(d,d';hy)

B;(d;h,) l
o(d.d';h) =K, (ld=d'|/h)K (D, (d.d'h_)/C,) \t\> B.(d:hy)

Dﬁj (d.d%h )= p(Bj(d;hs—1),Bj(d';hs_l)) Stopping Rule

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

« Adaptive Estimates




Simulation

True Image
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20 40 60

Estimate with LF and r=0

SVCM
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20 40 60

Initial Estimate in SVCM
e o L A O

20 40 60
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Bias with LF and r=1

60
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Simulation

Bias with LF and r=0

20 40 60

Bias with LF and r=2

60}

MSE with SVCM

20 40 60

MSE with LF and r=1
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Interaction effect estimates




2 Longitudinal Neuroimaging Data
vi(d,t) = p(d,x;(t)) +ni(d, t) +€i(d, t) for i =1,...,n, (2)
where
Across p(d,x;(t)) is the fixed main effect, which depends semi-parametrically
subjects & time  ,, the covariates x;(t) = (xi1(t), ..., xi0(t))7,
AcCross ni(d, t) characterizes both individual image variations from p(d,x;(t))

Modality & time and the medium-to-long-range dependence of imaging data
between y;(d, t) and y;(d’, t') for any (d, t) # (d’, t'),
Local e;(d, t) are spatially and temporally correlated errors that capture

spatial-temporal the local (or short-range) dependence of imaging data,

smoothness ni(d,t) and €;(d, t) are, respectively, independent and identical copies

of GP(0,%,) and GP(0,X,) and mutually independent.
Hyun,J.W.,, Li, Y. M., Wang, Y.P., H. Zhu (2014) LSGPP. In Submission.
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LY ADNI PET Data

(c)
016 016
014 014
012 012
'R ] 'R ]
008 008
006 006
0 004
002
1]
016 016
014 014
012 012
'R ] 'R ]
008
0.08
004
002
1] 1]

Figure : rtMSPE maps for prediction of ADNI PET images at month 12
for 79 test subjects. Selected slices are shown for (a) Semi-parametric
model; (b) Semi-parametric model+FPCA; (c) Semi-parametric
model+FPCA—+Spatial-temporal model.
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2 Big Data Integration

SIMPLY SUSTAINABLE "
N —

G: genetic markers

D: disease

http://en.wikipedia.org/wiki/DNA_sequence
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Genome-wide Identification of Variants
Affecting Early Human Brain Development

Pl: Dr. Knickmeyer

The central objective of this project is to identify genetic factors which explain
variation in neonatal brain structure, as assessed by magnetic resonance
imaging (MRI) and diffusion tensor imaging (DTI).

Singletons, twins, high risk

A longitudinal prospective study

900 young children aged 0 to 6 years

3TMRI (Seimens Allegra)

—T1, T2, DTI, resting state fMRI

Genotyping: the lllumina OMNI quad beadchip with 1,140,419
single nucleotide polymorphisms (SNPs) and more than 6,000
common and 5,000 rare CNV regions with 10-15 markers per
region
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\ @ %4 CS5: Candidate Genes and Neonatal Gray Metter

« 272 neonates

- 152 Male and 120 Female, 144 singletons, 128 twins
 Tensor based morphometry
« Candidate Genes

— apolipoproteinE (APOE;e3¢e4 vs.£3€3)

— catechol-O-methyltransferase (COMT, rs4680)

— disrupted-in-schizophrenia-1(DISC1,rs821616andrs6675281)
— neuregulin1 (NRG1,rs35753505andrs6994992)

— estrogenreceptoralpha (ESR1,rs9340799andrs2234693)

— brain-derivedneurotrophicfactor(BDNF,rs6265)

— glutamatedecarboxylase1(GAD1akaGADG67,rs2270335)
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COMT (rs4680)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



CS6: GWAS Neonatal ROls

2 4 6 8 10

_.
w
&)
~

©

562 subjects (296 singletons and 246 twins)
Buccal cells were genotyped with Affymetrix
Axiom Genome-Wide LAT and Exome arrays.
SNP imputation was performed using data from
the 1000 Genomes project. An intergenic hotspot
in 15913.3 fell just short of genome-wide
significance in relation to ICV itself (rs8030297;
p=5.17 x 10-8, nearest gene KLF13).

11

15

12 — 14— 16— 182022 Xm
13 17 19

21 X

Xf

~ 100
- 80
rs8030297

[ ) 1
(]
8
_ 3
z e . Fo0 £
? (Sho 2
L S
s 2
= i
{=2] =3
S 44 a0 2
| [?)
% <
° g

[ ]

@

<~ MTMR10 < L0C283710 KLF13— < OTUD7A
2 MFsS
< TRPM1
<~MI’F1211
31.4 316 31.8 32

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



CS6: GWAS Neonatal ROls

Table. Loci exceeding conventional GWAS threshold for ICV-adjusted brain volumes

Tissue Volume CHR Best SNP P-Value Closest Gene*
WM 5 rs32892 3.95x10° MEF2C
17 rs78151819 2.33x108 cl7orf112
4 rs114518130 1.59x10"° IGFBP7
GM 10 rs11012877 1.42 x10¢ CACNB2
7 rs7786147 418 x 108 MPLKIP
CSF 18 rs11875537 430x10°8 METTL4
Cortical GM NONE
5 rs76674566 7.65 x 10710 DPYSL3
Cortical WM 4 rs116957462 1.19 x 108 BANK1
14 rs80211808 3.86 x 108 CCDC88C
10 rs60689930 497 x 108 PPAPDC1A
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N// CS6: Imaging Genetics for ADNI

Pl: Dr. Michael W. Weiner

detecting AD at the earliest stage and marking its progress through biomarkers;
developing new diagnostic methods for AD intervention, prevention, and treatment.

nnnnn

=== BIOMARKER MAGNITUDE ==

A AB

« A longitudinal prospective study with 1700 aged between 55 to 90 years
« Clinical Data including Clinical and Cognitive Assessments

* Genetic Data including llumina SNP genotyping and WGS

 MRI (fMRI, DTI, T1, T2)

 PET (PIB, Florbetapir PET and FDG-PET)
« Chemical Biomarker

AD Progression

AENORMAL

e Tau-mediated neuronal injury and dysfunction
“wssss Brain structure
= Memory

=== Clinical function

CCCCCC

— LF abetal) — ’ — s (A
..... bot w— Ui arpd vibime
— (L Tes w— (ogrutive Performance

Cognitively normal MCl Dementia

—— cuinicaL bisease sTAGE =¥ he UNIVERSITY of NORTH CAROLINA at CHAPEL HILL
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\q_‘
M&SG Fast Voxelwise Genome Wide Association analysiS
+ 708 subjects (186 AD, 388 MCI, and 224 HC)

- 501,584 SNPs

Manhattan Plot

RAVEN Maps with 501,584 voxels

-10gy(P)

40 80 120 160

; : APOE
computational time

1 CPU 2 days

-log (p-value) -
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- Connectome-Wide Genome-Wide Screen
2 Alzheimer risk gene

Discovery sample — Young Adults
Effect in ADNI

Within 2 weeks Sherva et al. published SPON1
Found in a cognitive GWAS in AD
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Statistical Methods

Imaging

Genetics

Candidate ROI

Many ROI

Candidate SNP

~

Imager

Voxelwise

& |

Imager

Candidate Gene

SORL 1 JNTSTR IR

Genome-wide SNP

rs661903 | rs592e6197| r
rS11493928 | rs58524168| r
rs34984204 | rs11218322 |
rsSE682479 | rs12279197|
rs664238 | rs59966742 |
rs617847 |

)
1 )

Genome-wide Gene

BUD13|] sScN4B| cBL] O
BUD13| SCN2B| MCAM| G
BUD13 | AMICAL1| MCAMI G
ZNF259| AMICAL | MFRF1 G
ZNF259 | AMICAL11 MFRP| ¢

¢¢¢¢

Hibar, et al. HBM 2012
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2 Data Structure

Person No.1 --+---- Person No.1000

&
Imaging: Eﬂl

SNP1 SNP2 ....... SNP

Person No. 1 1 2 ... 0

’ . o . 1

Genetic: ‘ - ; T
Person No. 100 i 1 O ce 2 i
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Challenging Issues

yi(.) — f(xi (O)aB (.90))@81'(.)

Complicated domains (e.g., surface mesh, loci)
Complicated objects (e.g., matrix response)

Longitudinal and familial studies (e.g., heritability)
Short-range to medium-to-long-range spatial/genetic
correlations

High-dimensional response and covariate

Asymptotic theory (e.g., simultaneous confidence bound,
minimax theory)
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i Big-Data Challenges
10* 10°
X:p.Xn BlpxXpy
10° 10’
10*
Memory: Y -nx D
’ Y
O((p,+p,)n+p.p,) 10

Computational time: 0(]9 p n) — 0(1017)
XLy
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where B(v)= (ﬁl(V),...,ﬁK(V))T is a K X1 vector associated with

non-genetic predictors, and Y(C»V) = (yl(c,v),...,}/L(c,v))T is an L X1

vector of genetic fixed effects (e.g., additive or dominant).
Moreover, ¢ (v) are measurement errors with zero mean and

e = {e,- (v):ve V} are independent across i.
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X A Heteroscedastic Linear Model

We need to test:
Hy(c,v):¥(c,v)=0 versus H (c,v):¥(c,v)#0 for each (c,v)

We calculate a Wald-type statistic as:

1

W(c,v) =y (C,V)T {COV(}; (c,v))}_ ’)7(0,\2)

~ui{21(1,-7,)2.} 2 (1,- P, )0 (e Y ()Y () (1, P) 2,

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



7 Fast Voxelwise Genome Wide Association analysiS

(Il) Global Sure

(1) Spatially . :’> Independence »| (1ll) Detection
Heteroscedastic Screening Procedure

Procedure

Linear Model

152203646

(QN/ND) S8 LoREUIqUICOSY

MIR54BA3~
T
448




Key Features
X:p Xl X:p xl=X":pfxl

X: Sparsity; Y|X: Clustered ROls
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ROI: 10x 10

Simulation Studies

Simulation settings: the dark, gray, and white regions
in the figure, respectively, represent background,
brain region, and the effected ROI associated with the

causal SNPs. v =0.005
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Fig. Simulation results for comparisons between FVGWAS and the Matrix eQTL in
identifying significant voxel-SNP pairs.
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Results

—10Q4g(P)
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Manhattan Plot

1
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Chromosome
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Our computational time

About 33,800 s

observed -10g,q(p )
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> High Dimensional Regression Model
Data {(Y,,X;):i=1,--,n}
Yi={ywveV} X ={X(g):8€G}

Phenotype Genotype Error
Y X B E

nXp, = nxp,  p.Xp, wa nxp,

K itions:
ey Conditions max(p. ,Py) -7
« Sparsity of B

» Restricted null-space property for design matrix X
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2 Sparse and Low-rank Representation

Sparsity on B.
Low Rank Sparsity

B by

p.Xp, =H m

b, L]
PA(B) ) px(bx) + px(by) == pA(EB)

Regularization Methods

« Lasso1,2,3,.... 6 € argmin— Y (y; —z; 0)* + An Y _ [0}
. SCAD, MCP, ..... = par
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2 Genetic and Imaging Networks

Genetic Network

B f(B)f(B)
p.Xp, f(B) f(B)

= P . XD,

Imaging Network

B

pxp, = fB B PP,

f(B) f(B)
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> Factor Model
L Long-range Short-range
nx p, Correlation Correlation

5 4o

p,x1 P, Xq gx1 p,x1

-l -\

E. = A
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Simulation

BLASSO

© MEN=021, BIC=123

G-SMuRFS

MEN=012, BIC=12.1

GLRR3

" MEN=0 11, BIC=10.87

GLRR5

T MEN=D 12 RIC=109D

T MEN=001 RIC=10 9%

SVD

CMEN=0 021, BIC=14 212

" MEN=8 72, BIC=14.52

SVD

" MEN=0 14, BIC=1328

" MEN=D 11, BIC=1911

MEN=0.11, BiIC=18.08
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T MEN=001 RIC=1037

UN
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" MEN=499, BIC=14.41
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ADNI
749 AD/MCI/NC subjects, 93 ROls

40 AD candidate genes on the AlzGene web
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"2 Sparse Projection Regression Model

@ Multivariate regression with a high-dimensional responses and a
multivariate covariate of interest

@ Consider a Multivariate Linear Model (MLM):
Y=XB+E, ory =B"x+e

@ We are interested in the hypothesis testing problem:
Ho:CB =By v.s. H;:CB #Bg

@ Diverging q , fixed p case

e High-dimension two sample test

e Imaging genetics association study
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



> Sparse Projection Regression Model

o Let W = [wy,--- ,wy], then a projection regression model is given by:
WTy,' = (BW)TX,' —+ WTe,- = B\?\,—Xi + €;j

@ Hypothesis problem reduces to:

HOW . C,Bw — bo V.S. H1W . C,Bw 75 bo
where C3,, = CBW and by = BoW

@ How to determine an 'optimal’ W?

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



2

\ Sparse Projection Regression Model
@ We show that this is achieved by optimizing the following generalized

heritability ratio (GHR):

WT(él — Bo)TS)"(l(El — BO)W B WTZCW

w’Ypw - wiXpw

GHR(w; C) =

@ High Dimensional Setting

@ noise accumulation

e ill-conditioned sample covariance estimator: 2 g

@ Sparse Projection Regression Model is proposed as following:

Ty
argmax{vvaiCx} s.t. ||wll; <t
R




- Sparse Projection Regression Model

@ After estimating W, we can calculate a kK X k matrix as:

Th = (CBW — bO)ngl(CBw - bo)

@ Test statisitic: Tr, = trace(T,)
e Wild bootstrap

o Fit MLM under the null hypothesis to calculate the estimated
multivariate regression coefficient, denoted by By, residuals
é,' =Yi— B(-)rX,'. _

o Generate G bootstrap samples zgg) = (Bo)"x; + n§g)é;.

e Repeat the estimation procedure for estimating the optimal weights
and the calculation of the test statistic Trf,g).

o p-value of Tr, is computed as & Egzl 1(Tr®) > Tr,).



Simulation

{y1,---,¥n } and {yn,+1,---,¥n} C R from N(B;,XRr) and
N(B5, XR), respectively.

We set: n=2n; = 100 and g is 50, 100, 200, 400, 800, 1000, 1500,
and 2000, respectively.

Ho : B1 = B, against Hy : B # B>

Can be formulated by a regression model with BT = 31, B>] and
C=(1,-1).

Error covariance matrix g = 0(pj jr):

e Model 1: is an independent covariance matrix with

(pji') — diag(17 "t 1)
o Model 2: is a weak correlation matrix with

e Model 3: is a strong correlation covariance matrix with p;; = 0.8V =il



Simulation
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4 Big Data Integration

SIMPLY SUSTAINABLE "
N —
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G: genetic markers

D: disease

http://en.wikipedia.org/wiki/DNA_sequence
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W, Predictive Modeling

Predictive models can either be used directly to estimate a response

(output) given a defined set of features (input), or indirectly to drive the
choice of decision rules.

» Determining the ‘correct’ features

* Fitting the predictive model

« Performance assessment
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&' CS8: Pattern classification of neuroimages

Functional information

Quantitative

Pattern
Classification =) Diagnosis

Structural, functional, and multimodality image
classification

® Diagnosis of Schizophrenia

@ Diagnosis of Alzheimer’s disease (AD)

@ C(linical outcomes

Morphological information
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2 CS9: Predicting Conversion Time MCI-AD

343 MCI patients were then followed
over 48 months, with 150 participants
progressing to AD.

We extracted high dimensional MR
imaging (volumetric data on 93 brain
regions plus a hippocampal surface
data), and whole genome data
(504,095 SNPs from GWAS), as well
as routine neurocognitive and clinical
data at baseline.

Conversion time from MCI to AD.
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CS9: Predicting MCI-AD
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2 CS9: GWAS for Conversion Time MCI-AD
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C'Y C10. Alzheimer’s Disease DREAM Challenge 1

Its goal is to apply an open science approach to rapidly identify accurate predictive AD
biomarkers that can be used by the scientific, industrial and regulatory communities to

improve AD diagnosis and treatment.
Sub 1: Predict the change in cognitive scores 24 months after initial assessment.

Sub 2: Predict the set of cognitively normal individuals whose biomarkers are suggestive
of amyloid perturbation.

Sub 3: Classify individuals into diagnostic groups using MR imaging.
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\UAIzheimers Disease Big Data DREAM Challenge 1

Average Rank from 100,000 bootstrap replications
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2 Formulation

Data {(y,X):i=1,--,n} X ={X/(d):d€ D}

Disease Status, Survival
Time, Treatment,
Trajectories

Interesting scientific questions include
 Determine disease status

* ldentify earlier biomarker

* Predict disease trajectories

* Predict survival time (e.g., time-to-event)
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2 HRM versus FRM

Data {(yi,Xi):i=1,---,n} Xi={Xi(d)Zd€D}
v, =<X,,0 > +¢,

Strategy 1: Discrete Approach
(ngh dlmensmn Regressmn Model (HRM))

Strategy 2: Functional Regression Model (FRM)
=0, + [0()X,(d)m(d)+¢,
D
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Key Conditions: S={j:
={j:B.#0}
» Sparsity of S J ﬁ]

* Restricted Isometry Property (RIP) for design matrix X
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> FRM

Strategy 2: Functional Approach
=6, + f 0(d)X.(d)m(d) +¢,

l 0(d) - E@%(d)

=6, + iek [w (@X (d)ym(d)+e,

Basis Methods: fixed and data-driven basis functions

K, ={0(d)= Y 6,3, (d): (6,,:+) € [*} ) C(d.d")=Cov(X(d).X(d) = Y MG (D (d)
k=1 k=1
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2 Key Conditions
Key Conditions: an excellent set of basis functions
K
0(d)~ Y 0., (d) K <<n
k=1

K, ={6()} Alighment K, ={X(\)}

* Sparsity of basis representation {0, :k=1,---}

« Decay rate of spectral of C or K"*CK"

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



4 HRM

Y | X ~ Exponential Family(u,¢)
g(uW)=0,Z+<X,B, >

(a)

CP decomposition

B

Tucker decomposition

U(l)

Y I~
Jy xJ, x/, U(2)
Total Variation Penalty:

|Bol| v = sup {/Bo(u, v)div f(u,v)dudv : f € C(; R?),|f|e < 1}
Q
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Total Variation

T he total variation has been introduced in Computer Vision
first by Rudin, Osher and Fatemi, 1992.

Many real images with edges have small total variation since
image edges usually reside in a low-dimensional subset of pixe

It has proved to be quite efficient for regularizing images
without smoothing the boundaries of the objects.
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True Image

Triangle Oval
T-shape checkerboard

T ™
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TV (Top row); Lasso (Second row); Lasso-Haar (Third row);
Matrix regression (fourth row); FPCR (Fifth row); and WNET(Sixth row).
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Al ADNI

@ T he sample in our investigation includes n = 403 subjects: 223
healthy controls (HC) (107 females and 116 males) and 180
individuals with AD (87 females and 93 males).

@ The image predictor X is the 2D representation of left
hippocampus. The covariate vector Z; includes constant(=1),
gender (Female=0 and Male = 1), age (55—92), and behavior
score (1—36).

@ Given (X, Z;), Y is assumed to follow a Bernoulli distribution
with the success probability p; satisfying

logit(p;) = (X;, B0 + 04 Z; for i=1,...,n.
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20 40 60 80 100 120 140

(a) (c) (e)

Figure : Estimated coefficient images for hippocampus data based four
methods: the 2d-representation of TV estimator (a) and the surface
representation of TV estimator (b), Lasso estimator (c), Lasso-wavelet
estimator (d), and matrix regression estimator (e).
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Functional Linear Cox Regression Model

» h.(t), the i-th hazard function, is defined as the event rate at
time t conditional on survival until time t or later.

 The covariates are multiplicatively related to the hazard.

*  X.(s), denotes the image data, 7, denotes the scalar
covariates

« The hazard function of the i-th subject under Cox regression is

h (1) = hy(D)exp(Y. 2,7, +| X,(5)B(5)ds)
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2 Formulation

Data {(y,,X):i=1,---,n} X ={X.(d):d &€ D}
Yi = f(i(i)_l_gi

Disease Status
Survival Time

Treatment
Trajectories

f- Is this the right X space for prediction?

||||||||
nnnnnnnnnn

'- How to deal with the curse of dimensionality?

e How to choose the loss function?
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Path Diagram

Vi = fo(X)+E, v, = f(z)+¢€

Small dimensional &
relatively independent
features

STAGE Il

<
- (
STAGE | STAGE II
\ 2

High-dimensional &
Strongly Spatial - )‘
features >

STAGE |

AA

Moderate dimensional &
Strong Spatial features

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



MWPCR

Model (X—lN,uf)Ql---QK=UDV+E

@%

I
U

4

= f(X))+¢€ =gu)+¢
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2 MWPCR

Prewhiten )ZR =(X-1,u)0,---0,
¥
GPcA OO~ )= Au; e,

K
HXRIZ_ZdHukWMH + A Zpl A gure) + Ao ) Pa(di evr )

Regression y, = f(Xi)-|- € = g(ui)-|— £,
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Spatially Weighted PCA
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Spatially Weighted PCA
Table 1: Average Misclassification Percentage for Simulation I

PCA SPCA WPCA-1 | WPCA-2 | SWPCA | PSWPCA

ALL 50 100 200 400 1000 ALL ALL ALL ALL
REG 302 126 132 142 .162 205 199 130 .026 .025

(078) | (.052) (.052) (.055) (.057) (.064) | (.064) (.056) (.025) (.024)
k-NN | 338 | 135 141 152 182 225 186 156 .030 .027

(071) | (.049) (.049) (.050) (.053) (.071) | (.055) (.059) (.029) (.025)
SVM | .327 .140 147 159 183 226 215 152 .033 .028

(078) | (.054) (.055) (.055) (.059) (.072) | (.067) (.055) (.029) (.026)

Standard deviations are in parenthesis. For SPCA, the number of “top” selected voxels used in the algorithm are
considered to be 50, 100, 200, 400, and 1000.

Table 2: Average Misclassification Percentage for Simulation I (Non-PCA Methods)

“SPLS-REG | SPLS-ANN | SPLS-SVM | SPLS | SDA
130 139 156 128 | 120
(.052) (.056) (.066) (.050) | (.050)

Standard deviations are in parenthesis.
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Spatially Weighted PCA
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2 Simulation I: Classification

Class 0 Class 1

- 0 White
1 Green
2 Red

X;(d)=B,(d)+ B,(d)y, +&(d)

Type | Type |l Type lli
N(@0,4) Short-range Long-range
correlation correlation
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Simulation I: Classification

Table 1: Misclassification rates for PCA and SWPCA under the different number of PCs.

Noise Number of PCs | PCA | SWPCA1 | SWPCA2 | SWPCA3
Type I 5 0.40 0.11 0.09 0.10
7 0.40 0.13 0.11 0.10
10 0.40 0.13 0.11 0.10
Type 11 5 0.40 0.04 0.08 0.03
7 0.39 0.03 0.09 0.04
10 0.38 0.03 0.07 0.04
Type II1 5 0.40 0.13 0.10 0.09
7 0.41 0.13 0.10 0.10
10 0.41 0.13 0.10 0.10
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Simulation I: Classification

Noise sLDA | sPLS | SLR | SVM | ROAD | PCA | SWPCA
Type 1 0.28 0.43 0.45 0.38 0.36 0.36 0.10
Type 11 0.27 0.08 0.18 0.26 0.08 0.45 0.03
Type 111 0.52 0.30 0.61 0.60 0.50 0.35 0.09

sLDA: sparse discriminant analysis
sPLS: sparse partial least squares analysis

SLR: sparse logistic regression
SVM: support vector machine

ROAD:
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A ADNI

94 AD subjects and 104 NC subjects

Table 3: Results of Real Data: average misclassification rates.

sLDA | sPLS | sLogistic | SVM | ROAD | PCA | SWPCA
0.255 | 0.163 0.179 0.168 0.189 0.194 0.117
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> Take-home Message

fPCA may not work in many cases.

Modified fPCA may work in some of these cases.
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ASA: Statistics in Imaging Section

SAMSI
2013 Neuroimaging Data Analysis
2015-2016 Challenges in Computational Neuroscience
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